Arens NC, West ID. Press-pulse: a general theory of mass extinction? Paleobiology. 2008;34(4):456–71.
Article
Google Scholar
Seyfried TN, Flores RE, Poff AM, D’Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515–27.
Article
CAS
PubMed
Google Scholar
Sonnenschein C, Soto AM. Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog. 2000;29(4):205–11.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Article
CAS
PubMed
Google Scholar
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73.
Article
PubMed
PubMed Central
Google Scholar
Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.
Article
CAS
PubMed
Google Scholar
Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.
Article
CAS
PubMed
Google Scholar
Lazebnik Y. What are the hallmarks of cancer? Nat Rev Cancer. 2010;10(4):232–3.
Article
CAS
PubMed
Google Scholar
Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol. 2011;21(2):72–82.
Article
CAS
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.
Article
PubMed
Google Scholar
Seyfried TN. Cancer as a metabolic disease: on the origin, management, and prevention of cancer. Hoboken: Wiley; 2012.
Book
Google Scholar
Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.
Article
CAS
PubMed
Google Scholar
Seyfried TN. Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol. 2015;3:43.
Article
PubMed
PubMed Central
Google Scholar
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzocca A, Ferraro G, Misciagna G, Carr BI. A systemic evolutionary approach to cancer: Hepatocarcinogenesis as a paradigm. Med Hypotheses. 2016;93:132–7.
Article
CAS
PubMed
Google Scholar
Bizzarri M, Cucina A. SMT and TOFT: Why and How they are opposite and incompatible paradigms. Acta Biotheor. 2016;64(3):221–39.
Article
PubMed
Google Scholar
Baker SG. A cancer theory kerfuffle can lead to new lines of research. J Natl Cancer Inst. 2015;107(2).
Wishart DS. Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2015;2(6):478–9.
Article
PubMed
PubMed Central
Google Scholar
Baker SG, Kramer BS. Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer. 2007;7:151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burgio E, Migliore L. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics. Mol Biol Rep. 2015;42(4):777–90.
Article
CAS
PubMed
Google Scholar
Soto AM, Sonnenschein C. Is systems biology a promising approach to resolve controversies in cancer research? Cancer Cell Int. 2012;12(1):12.
Article
PubMed
PubMed Central
Google Scholar
Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.
CAS
PubMed
Google Scholar
Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011;331(6024):1553–8.
Article
CAS
PubMed
Google Scholar
Cooke SL, Shlien A, Marshall J, Pipinikas CP, Martincorena I, Tubio JM, Li Y, Menzies A, Mudie L, Ramakrishna M, et al. Processed pseudogenes acquired somatically during cancer development. Nat Commun. 2014;5:3644.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bartesaghi S, Graziano V, Galavotti S, Henriquez NV, Betts J, Saxena J, Minieri V, Deli A, Karlsson A, Martins LM, et al. Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells. Proc Natl Acad Sci U S A. 2015;112(4):1059–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration. Int J Mol Sci. 2016;17(3):341.
Article
PubMed
PubMed Central
Google Scholar
Kim A. Mitochondria in cancer energy metabolism: culprits or bystanders? Toxicol Res. 2015;31(4):323–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
Article
CAS
PubMed
Google Scholar
Warburg O. On the respiratory impairment in cancer cells. Science. 1956;124:269–70.
CAS
PubMed
Google Scholar
Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR, Grammatico P. Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res Treat. 2008;110(3):439–52.
Article
CAS
PubMed
Google Scholar
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem. 2016;138(1):14–52.
Article
CAS
PubMed
Google Scholar
Racker E. History of the Pasteur effect and its pathobiology. Mol Cell Biochem. 1974;5(1–2):17–23.
Article
CAS
PubMed
Google Scholar
Warburg O. The Metabolism of Tumours. New York: Richard R. Smith; 1931.
Google Scholar
Seyfried TN. The Warburg dispute. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 107–17.
Chapter
Google Scholar
Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313(3):459–65.
Article
CAS
PubMed
Google Scholar
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.
Article
CAS
PubMed
Google Scholar
Poff AM, Ari C, Seyfried TN, D’Agostino DP. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One. 2013;8(6):e65522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiebish MA, Han X, Cheng H, Seyfried TN. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. ASN Neuro. 2009;1(3):e00011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 2011;1807(6):568–76.
Article
CAS
PubMed
Google Scholar
Leznev EI, Popova II, Lavrovskaja VP, Evtodienko YV. Comparison of oxygen consumption rates in minimally transformed BALB/3 T3 and virus-transformed 3T3B-SV40 cells. Biochemistry (Mosc). 2013;78(8):904–8.
Article
CAS
Google Scholar
Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C, Abildgaard C, Thorup K, Moghimi SM, Jensen PB, et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene. Oncotarget. 2013;4(4):584–99.
Article
PubMed
PubMed Central
Google Scholar
Seyfried TN. Is respiration normal in cancer cells? In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 119–32.
Chapter
Google Scholar
Hochachka PW, Somero GN. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford Press; 2002.
Google Scholar
Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A. 2005;102(17):5992–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arcos JC, Tison MJ, Gosch HH, Fabian JA. Sequential alterations in mitochondrial inner and outer membrane electron transport and in respiratory control during feeding of amino azo dyes; stability of phosphorylation. Correlation with swelling-contraction changes and tumorigenesis threshold. Cancer Res. 1969;29(6):1298–305.
CAS
PubMed
Google Scholar
Suarez RK, Lighton JR, Brown GS, Mathieu-Costello O. Mitochondrial respiration in hummingbird flight muscles. Proc Natl Acad Sci U S A. 1991;88(11):4870–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burk D, Schade AL. On respiratory impairment in cancer cells. Science. 1956;124(3215):270–2.
CAS
PubMed
Google Scholar
Smith AE, Kenyon DH. A unifying concept of carcinogenesis and its therapeutic implications. Oncology. 1973;27(5):459–79.
Article
CAS
PubMed
Google Scholar
Colowick SP. The status of Warburg’s theory of glycolysis and respiration in tumors. Q Rev Biol. 1961;36:273–6.
Article
Google Scholar
Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, et al. K-ras (G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 2012;22(2):399–412.
Article
CAS
PubMed
Google Scholar
Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis. 2004;25(7):1157–63.
Article
CAS
PubMed
Google Scholar
Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010;89(3):372–80.
Article
CAS
PubMed
Google Scholar
Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond). 2010;7(1):7.
Article
CAS
Google Scholar
Poff AM, Ari C, Arnold P, Seyfried TN, D’Agostino DP. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer. 2014;135(7):1711–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen PL. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 2007;39(3):211–22.
Article
CAS
PubMed
Google Scholar
Warburg O. Revidsed Lindau Lectures: The prime cause of cancer and prevention - Parts 1 & 2. In: Lindau BD, editor. Meeting of the Nobel-Laureates. Lake Constance: K. Triltsch; 1969. p. 1–9. http://www.hopeforcancer.com/OxyPlus.htm.
Google Scholar
Racker E. Bioenergetics and the problem of tumor growth. Am Sci. 1972;60(1):56–63.
CAS
PubMed
Google Scholar
Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115–26.
Article
CAS
PubMed
Google Scholar
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyfried TN. Respiratory dysfunction in cancer cells. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 73–105.
Chapter
Google Scholar
Lichtor T, Dohrmann GJ. Respiratory patterns in human brain tumors. Neurosurgery. 1986;19(6):896–9.
Article
CAS
PubMed
Google Scholar
Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond). 2005;2:30.
Article
CAS
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 2002;62(22):6674–81.
CAS
PubMed
Google Scholar
Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274.
Article
CAS
PubMed
Google Scholar
Morton R, Cunningham C, Jester R, Waite M, Miller N, Morris HP. Alteration of mitochondrial function and lipid composition in Morris 7777 hepatoma. Cancer Res. 1976;36(9 pt.1):3246–54.
CAS
PubMed
Google Scholar
Schild L, Lendeckel U, Gardemann A, Wiswedel I, Schmidt CA, Wolke C, Walther R, Grabarczyk P, Busemann C. Composition of molecular cardiolipin species correlates with proliferation of lymphocytes. Exp Biol Med. 2012;237(4):372–9.
Article
CAS
Google Scholar
Sapandowski A, Stope M, Evert K, Evert M, Zimmermann U, Peter D, Page I, Burchardt M, Schild L. Cardiolipin composition correlates with prostate cancer cell proliferation. Mol Cell Biochem. 2015;410(1–2):175–85.
Article
CAS
PubMed
Google Scholar
Canuto RA, Biocca ME, Muzio G, Dianzani MU. Fatty acid composition of phospholipids in mitochondria and microsomes during diethylnitrosamine carcinogenesis in rat liver. Cell Biochem Funct. 1989;7(1):11–9.
Article
CAS
PubMed
Google Scholar
Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008;49(12):2545–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyta L, Jarnouen K, Pinault M, Guimaraes C, de Barros JP P, Chevalier S, Dumas JF, Maillot F, Hatch GM, Loyer P, et al. Reduced cardiolipin content decreases respiratory chain capacities and increases ATP synthesis yield in the human HepaRG cells. Biochim Biophys Acta. 2016;4:443–53.
Article
CAS
Google Scholar
Kiebish MA, Han X, Cheng H, Seyfried TN. Mitochondrial lipidome and electron transport chain alterations in non-metastatic and metastatic murine brain tumors. J Neurochem. 2008;104 Suppl 1:37–8.
Google Scholar
Claypool SM, Koehler CM. The complexity of cardiolipin in health and disease. Trends Biochem Sci. 2012;37(1):32–41.
Article
CAS
PubMed
Google Scholar
Ren M, Phoon CK, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res. 2014;55:1–16.
Article
CAS
PubMed
Google Scholar
Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? The critical role of alpha-ketoglutarate dehydrogenase complex. J Neurosci Res. 2013;91(8):1030–43.
Article
CAS
PubMed
Google Scholar
Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):55.
Article
PubMed
PubMed Central
Google Scholar
Deighton RF, Le Bihan T, Martin SF, Gerth AM, McCulloch M, Edgar JM, Kerr LE, Whittle IR, McCulloch J. Interactions among mitochondrial proteins altered in glioblastoma. J Neuro-Oncol. 2014;118(2):247–56.
Article
CAS
Google Scholar
Arismendi-Morillo GJ, Castellano-Ramirez AV. Ultrastructural mitochondrial pathology in human astrocytic tumors: potentials implications pro-therapeutics strategies. J Electron Microsc (Tokyo). 2008;57(1):33–9.
Article
Google Scholar
Schmitt S, Schulz S, Schropp EM, Eberhagen C, Simmons A, Beisker W, Aichler M, Zischka H. Why to compare absolute numbers of mitochondria. Mitochondrion. 2014;19 Pt A:113–23.
Article
PubMed
CAS
Google Scholar
Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G. Mitochondria and cancer: past, present, and future. Biomed Res Int. 2013;2013:612369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivasan S, Guha M, Dong DW, Whelan KA, Ruthel G, Uchikado Y, Natsugoe S, Nakagawa H, Avadhani NG. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene. 2015;35:1585–95.
Sriskanthadevan S, Jeyaraju DV, Chung TE, Prabha S, Xu W, Skrtic M, Jhas B, Hurren R, Gronda M, Wang X, et al. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood. 2015;125(13):2120–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4.
Article
CAS
PubMed
Google Scholar
Kaipparettu BA, Ma Y, Park JH, Lee TL, Zhang Y, Yotnda P, Creighton CJ, Chan WY, Wong LJ. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS One. 2013;8(5):e61747.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyfried TN. Mitochondria: The ultimate tumor suppressor. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 195–205.
Chapter
Google Scholar
Kloc M, Li XC, Ghobrial RM. Are Macrophages Responsible for Cancer Metastasis? J Immuno Biol. 2016;1:1.
Google Scholar
Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;8(5):377–86.
Article
CAS
PubMed
Google Scholar
Bastida-Ruiz D, Van Hoesen K, Cohen M: The Dark Side of Cell Fusion. Int J Mol Sci. 2016, 17 (5). doi: 10.3390/ijms17050638
Seyfried TN. Mitochondrial respiratory dysfunction and the extrachromosomal origin of cancer. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 253–9.
Chapter
Google Scholar
Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, et al. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J. 2016;30(1):286–300.
Article
CAS
PubMed
Google Scholar
Seyfried TN. Is mitochondrial glutamine fermentation a missing link in the metabolic theory of cancer? In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 133–44.
Chapter
Google Scholar
Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Torocsik B, Doczi J, Turiak L, Kiss G, Konrad C, Vajda S, et al. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. FASEB J. 2010;24(7):2405–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips D, Aponte AM, French SA, Chess DJ, Balaban RS. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry. 2009;48(30):7140–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwimmer C, Lefebvre-Legendre L, Rak M, Devin A, Slonimski PP, di Rago JP, Rigoulet M. Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an ATP synthase-deficient yeast. J Biol Chem. 2005;280(35):30751–9.
Article
CAS
PubMed
Google Scholar
Kiss G, Konrad C, Pour-Ghaz I, Mansour JJ, Nemeth B, Starkov AA, Adam-Vizi V, Chinopoulos C. Mitochondrial diaphorases as NAD (+) donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. FASEB J. 2014;28(4):1682–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newsholme EA, Board M. Application of metabolic-control logic to fuel utilization and its significance in tumor cells. Adv Enzyme Regul. 1991;31:225–46.
Article
CAS
PubMed
Google Scholar
DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.
Article
CAS
PubMed
Google Scholar
Yuneva M. Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle. 2008;7(14):2083–9.
Article
CAS
PubMed
Google Scholar
Medina MA. Glutamine and cancer. J Nutr. 2001;131(9 Suppl):2539–2542S. discussion 2550S-2531S.
Google Scholar
Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y. A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res. 2013;23(5):724–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakashima RA, Paggi MG, Pedersen PL. Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells. Cancer Res. 1984;44(12 Pt 1):5702–6.
CAS
PubMed
Google Scholar
Ta NL, Seyfried TN. Influence of Serum and Hypoxia on Incorporation of [(14) C]-D-Glucose or [(14) C]-L-Glutamine into Lipids and Lactate in Murine Glioblastoma Cells. Lipids. 2015;50(12):1167–84.
Article
CAS
PubMed
Google Scholar
Portais JC, Voisin P, Merle M, Canioni P. Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie. 1996;78(3):155–64.
Article
CAS
PubMed
Google Scholar
Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA, Osterman AL, Smith JW. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem. 2011;286(49):42626–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelton LM, Huysentruyt LC, Seyfried TN. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer. 2010;127(10):2478–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pisarenko OI, Solomatina ES, Ivanov VE, Studneva IM, Kapelko VI, Smirnov VN. On the mechanism of enhanced ATP formation in hypoxic myocardium caused by glutamic acid. Basic Res Cardiol. 1985;80(2):126–34.
Article
CAS
PubMed
Google Scholar
Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci U S A. 2000;97(6):2826–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496(7444):238–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hochachka PW, Owen TG, Allen JF, Whittow GC. Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol B. 1975;50(1):17–22.
CAS
PubMed
Google Scholar
King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25(34):4675–82.
Article
CAS
PubMed
Google Scholar
Marsh J, Mukherjee P, Seyfried TN. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res. 2008;14(23):7751–62.
Article
CAS
PubMed
Google Scholar
Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr. 2007;39(3):231–4.
Article
CAS
PubMed
Google Scholar
Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL. HIF-1 Inhibits Mitochondrial Biogenesis and Cellular Respiration in VHL-Deficient Renal Cell Carcinoma by Repression of C-MYC Activity. Cancer Cell. 2007;11(5):407–20.
Article
CAS
PubMed
Google Scholar
Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC, et al. Acetate dependence of tumors. Cell. 2014;159(7):1591–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosios AM, Vander Heiden MG. Acetate metabolism in cancer cells. Cancer & metabolism. 2014;2(1):27.
Article
Google Scholar
Ballard FJ. Supply and utilization of acetate in mammals. Am J Clin Nutr. 1972;25(8):773–9.
CAS
PubMed
Google Scholar
Jaworski DM, Namboodiri AM, Moffett JR. Acetate as a Metabolic and Epigenetic Modifier of Cancer Therapy. J Cell Biochem. 2015;117:574–88.
Huysentruyt LC, Seyfried TN. Perspectives on the mesenchymal origin of metastatic cancer. Cancer Metastasis Rev. 2010;29(4):695–707.
Article
PubMed
PubMed Central
Google Scholar
Pawelek JM. Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol. 2005;6(12):988–93.
Article
CAS
PubMed
Google Scholar
Ruff MR, Pert CB. Small cell carcinoma of the lung: macrophage-specific antigens suggest hemopoietic stem cell origin. Science. 1984;225(4666):1034–6.
Article
CAS
PubMed
Google Scholar
Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 2011;71(4):1497–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeh MH, Chang YH, Tsai YC, Chen SL, Huang TS, Chiu JF, Ch’ang HJ. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother Oncol. 2016;119(2):250–8.
Article
CAS
PubMed
Google Scholar
Abodief WT, Dey P, Al-Hattab O. Cell cannibalism in ductal carcinoma of breast. Cytopathology. 2006;17(5):304–5.
Article
CAS
PubMed
Google Scholar
Fais S. Cannibalism: a way to feed on metastatic tumors. Cancer Lett. 2007;258(2):155–64.
Article
CAS
PubMed
Google Scholar
Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, Gentile M, Luciani F, Parmiani G, Rivoltini L, et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 2006;66(7):3629–38.
Article
CAS
PubMed
Google Scholar
Matarrese P, Ciarlo L, Tinari A, Piacentini M, Malorni W. Xeno-cannibalism as an exacerbation of self-cannibalism: a possible fruitful survival strategy for cancer cells. Curr Pharm Des. 2008;14(3):245–52.
Article
CAS
PubMed
Google Scholar
Gupta K, Dey P. Cell cannibalism: diagnostic marker of malignancy. Diagn Cytopathol. 2003;28(2):86–7.
Article
PubMed
Google Scholar
Kojima S, Sekine H, Fukui I, Ohshima H. Clinical significance of “cannibalism” in urinary cytology of bladder cancer. Acta Cytol. 1998;42(6):1365–9.
Article
CAS
PubMed
Google Scholar
Shelton LM. Targeting energy metabolism in brain cancer. Chestnut Hill: Boston College; 2010.
Google Scholar
Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75(3):544–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 2009;19(7):802–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ, Singh KK, Nie D. Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS (Q61L). Cancer Biol Ther. 2010;9(2):122–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther. 2008;7(8):1182–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delsite RL, Rasmussen LJ, Rasmussen AK, Kalen A, Goswami PC, Singh KK. Mitochondrial impairment is accompanied by impaired oxidative DNA repair in the nucleus. Mutagenesis. 2003;18(6):497–503.
Article
CAS
PubMed
Google Scholar
Kulawiec M, Safina A, Desouki MM, Still I, Matsui SI, Bakin A, Singh KK. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther. 2008;7(11):1732–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK. Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res. 2003;31(14):3909–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta. 2011;1807(6):620–5.
Article
CAS
PubMed
Google Scholar
Veatch JR, McMurray MA, Nelson ZW, Gottschling DE. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. 2009;137(7):1247–58.
Article
PubMed
PubMed Central
Google Scholar
Samper E, Nicholls DG, Melov S. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell. 2003;2(5):277–85.
Article
CAS
PubMed
Google Scholar
Seoane M, Mosquera-Miguel A, Gonzalez T, Fraga M, Salas A, Costoya JA. The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process. PLoS One. 2011;6(8):e23327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics. 2012;7(4):326–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):309–19.
Article
CAS
PubMed
Google Scholar
Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14(11):709–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38(1):96–109.
Article
CAS
PubMed
Google Scholar
Szent-Gyorgyi A. The living state and cancer. Proc Natl Acad Sci U S A. 1977;74(7):2844–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cairns J. The origin of human cancers. Nature. 1981;289(5796):353–7.
Article
CAS
PubMed
Google Scholar
Mukherjee S. The Emperor of All Maladies: A Biography of Cancer (pages 285, 303, 333, 342). New York: Scribner; 2010.
Google Scholar
Potts R. Environmental hypotheses of hominin evolution. Am J Phys Anthropol. 1998;Suppl 27:93–136.
Article
CAS
PubMed
Google Scholar
Potts R. Humanity’s Descent: The Consequences of Ecological Instability. New York: William Morrow & Co., Inc.; 1996.
Google Scholar
Potts R. Complexity of Adaptibility in Human Evolution. In: Goodman M, Moffat AS, editors. Probing Human Origins. edn. Cambridge: American Academy of Arts & Sciences; 2002. p. 33–57.
Google Scholar
Seyfried TN. Nothing in cancer biology makes sense except in the light of evolution. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 261–75.
Chapter
Google Scholar
Darwin C. On the Origin of Species by Means of Natural Selection, or on the Preservation of Favored Races in the Struggle for Life. London: John Murry; 1859.
Google Scholar
Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol. 2009;29(16):4495–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JA, et al. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009;8:54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3.
Article
CAS
PubMed
Google Scholar
Galmiche A, Fueller J. RAF kinases and mitochondria. Biochim Biophys Acta. 2007;1773(8):1256–62.
Article
CAS
PubMed
Google Scholar
Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 2016;531(7592):110–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabacka M, Pierzchalska M, Reiss K. Peroxisome Proliferator Activated Receptor alpha Ligands As Anti-Cancer Drugs Targeting Mitochondrial Metabolism. Curr Pharm Biotechnol. 2013;14:342–56.
Eales KL, Hollinshead KE, Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5:e190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21.
CAS
PubMed
Google Scholar
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123(9):3678–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozhok AI, DeGregori J. Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. Proc Natl Acad Sci U S A. 2015;112(29):8914–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer. 2008;7:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK. Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst. 1999;91(6):512–23.
Article
CAS
PubMed
Google Scholar
Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14(2):202–8.
Article
CAS
PubMed
Google Scholar
Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, Seyfried TN. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond). 2010;7(1):33.
Article
CAS
Google Scholar
Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN. Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002;86(10):1615–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee P, Abate LE, Seyfried TN. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004;10(16):5622–9.
Article
CAS
PubMed
Google Scholar
Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89(7):1375–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyfried TN, Mukherjee P. Anti-Angiogenic and Pro-Apoptotic Effects of Dietary Restriction in Experimental Brain Cancer: Role of Glucose and Ketone Bodies. In: Meadows GG, editor. Integration/Interaction of Oncologic Growth. Volume 15. 2nd ed. New York: Kluwer; 2005. p. 259–70.
Chapter
Google Scholar
Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond). 2007;4:5.
Article
CAS
Google Scholar
Soto AM, Sonnenschein C. The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays. 2004;26(10):1097–107.
Article
CAS
PubMed
Google Scholar
Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.
Article
CAS
PubMed
Google Scholar
Cahill Jr GF. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22.
Article
CAS
PubMed
Google Scholar
Magee BA, Potezny N, Rofe AM, Conyers RA. The inhibition of malignant cell growth by ketone bodies. Aust J Exp Biol Med Sci. 1979;57(5):529–39.
Article
CAS
PubMed
Google Scholar
Skinner R, Trujillo A, Ma X, Beierle EA. Ketone bodies inhibit the viability of human neuroblastoma cells. J Pediatr Surg. 2009;44(1):212–6. discussion 216.
Article
PubMed
Google Scholar
Maurer GD, Brucker DP, Baehr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11(1):315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang HT, Olson LK, Schwartz KA. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab. 2013;10(1):47.
Article
CAS
Google Scholar
Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P. Influence of Caloric Restriction on Constitutive Expression of NF-kappaB in an Experimental Mouse Astrocytoma. PLoS One. 2011;6(3):e18085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012;7(5):e36197.
Article
PubMed
PubMed Central
Google Scholar
Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD, Griffith BG, Skinner CL, Suslov O, Deleyrolle LP, et al. A Supplemented High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clin Cancer Res. 2015;22:2482–95.
Vincent M. Cancer: a de-repression of a default survival program common to all cells?: a life-history perspective on the nature of cancer. BioEssays. 2012;34(1):72–82.
Article
CAS
PubMed
Google Scholar
Cervantes-Madrid D, Romero Y, Duenas-Gonzalez A. Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy. Biomed Res Int. 2015;2015:690492.
Article
PubMed
PubMed Central
CAS
Google Scholar
Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57(1):315–29.
Article
PubMed
Google Scholar
Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-based therapies. Curr Opin Neurol. 2012;25(2):173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr Metab (Lond). 2015;12:12.
Article
CAS
Google Scholar
Poff AM, Ward N, Seyfried TN, Arnold P, D’Agostino DP. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PLoS One. 2015;10(6):e0127407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burt ME, Gorschboth CM, Brennan MF. A controlled, prospective, randomized trial evaluating the metabolic effects of enteral and parenteral nutrition in the cancer patient. Cancer. 1982;49(6):1092–105.
Article
CAS
PubMed
Google Scholar
Campbell TC. Dietary protein, growth factors, and cancer. Am J Clin Nutr. 2007;85(6):1667.
CAS
PubMed
Google Scholar
Lu Z, Xie J, Wu G, Shen J, Collins R, Chen W, Kang X, Luo M, Zou Y, Huang LJ, et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature. 2017;23:79–90.
Jiang YS, Wang FR. Caloric restriction reduces edema and prolongs survival in a mouse glioma model. J Neuro-Oncol. 2013;114(1):25–32.
Article
Google Scholar
Tisdale MJ, Brennan RA. A comparison of long-chain triglycerides and medium-chain triglycerides on weight loss and tumour size in a cachexia model. Br J Cancer. 1988;58(5):580–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tisdale MJ, Brennan RA, Fearon KC. Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer. 1987;56(1):39–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lussier DM, Woolf EC, Johnson JL, Brooks KS, Blattman JN, Scheck AC. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer. 2016;16:310.
Article
PubMed
PubMed Central
Google Scholar
Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer metabolism. 2014;2:18.
Article
PubMed
PubMed Central
Google Scholar
Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, Sperl W, Kofler B. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS One. 2015;10(6):e0129802.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG, Sperl W, Kofler B. Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget. 2016;7(13):17060–73.
PubMed
PubMed Central
Google Scholar
Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE, Button AM, Szweda LI, Smith BJ, Spitz DR, Fath MA. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res. 2013;19(14):3905–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavropoulos JC, Buschemeyer 3rd WC, Tewari AK, Rokhfeld D, Pollak M, Zhao Y, Febbo PG, Cohen P, Hwang D, Devi G, et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila). 2009;2(6):557–65.
Article
CAS
Google Scholar
Kim HS, Masko EM, Poulton SL, Kennedy KM, Pizzo SV, Dewhirst MW, Freedland SJ. Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer. BJU Int. 2012;110(7):1062–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv M, Zhu X, Wang H, Wang F, Guan W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS One. 2014;9(12):e115147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhuang Y, Chan DK, Haugrud AB, Miskimins WK. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS One. 2014;9(9):e108444.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hao GW, Chen YS, He DM, Wang HY, Wu GH, Zhang B. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. Asian Pac J Cancer Prev. 2015;16(5):2061–8.
Article
PubMed
Google Scholar
Maroon JC, Seyfried TN, Donohue JP, Bost J. The role of metabolic therapy in treating glioblastoma multiforme. Surg Neurol Int. 2015;6:61.
Article
PubMed
PubMed Central
Google Scholar
Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, Walenta S, Kammerer U, Coy JF, Weller M, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44(6):1843–52.
CAS
PubMed
PubMed Central
Google Scholar
Klement RJ. Calorie or carbohydrate restriction? The ketogenic diet as another option for supportive cancer treatment. Oncologist. 2013;18(9):1056.
Article
PubMed
PubMed Central
Google Scholar
Klement RJ. Restricting carbohydrates to fight head and neck cancer-is this realistic? Cancer biol med. 2014;11(3):145–61.
PubMed
PubMed Central
Google Scholar
Tan-Shalaby JL, Carrick J, Edinger K, Genovese D, Liman AD, Passero VA, Shah RB. Modified Atkins diet in advanced malignancies - final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr Metab (Lond). 2016;13:52.
Article
Google Scholar
Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr Metab. 2011;8(1):54.
Article
CAS
Google Scholar
Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro-Oncol. 2014;117(1):125–31.
Article
CAS
Google Scholar
Champ CE, Mishra MV, Showalter TN, Ohri N, Dicker AP, Simone NL. Dietary recommendations during and after cancer treatment: consistently inconsistent? Nutr Cancer. 2013;65(3):430–9.
Article
CAS
PubMed
Google Scholar
Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, Bontempo AF, Negassa A, Sparano JA. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28(10):1028–35.
Article
CAS
PubMed
Google Scholar
Schwartz K, Chang HT, Nikolai M, Pernicone J, Rhee S, Olson K, Kurniali PC, Hord NG, Noel M. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer metab. 2015;3:3.
Article
PubMed
PubMed Central
Google Scholar
Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes. 2016;9:143.
Article
PubMed
PubMed Central
CAS
Google Scholar
Freeman JM, Kossoff EH, Freeman JB, Kelly MT. The Ketogenic Diet: A Treatment for Children and Others with Epilepsy. 4th ed. New York: Demos; 2007.
Google Scholar
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond). 2004;1(1):11.
Article
CAS
Google Scholar
Cahill Jr GF, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. 2003;114:149–61. discussion 162–143.
PubMed
PubMed Central
Google Scholar
Fein EJ, Feinman RD. Insulin, carbohydrate restriction, metabolic syndrome and cancer. Expert Rev Endocrinol Metab. 2015;10:15–24.
Article
CAS
Google Scholar
Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL. Insulin, ketone bodies, and mitochondrial energy transduction. Faseb J. 1995;9(8):651–8.
CAS
PubMed
Google Scholar
VanItallie TB, Nufert TH. Ketones: metabolism’s ugly duckling. Nutr Rev. 2003;61(10):327–41.
Article
PubMed
Google Scholar
Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill Jr GF. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51(4):241–7.
Article
CAS
PubMed
Google Scholar
Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.
CAS
PubMed
Google Scholar
Fine EJ, Miller A, Quadros EV, Sequeira JM, Feinman RD. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int. 2009;9:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ciraolo ST, Previs SF, Fernandez CA, Agarwal KC, David F, Koshy J, Lucas D, Tammaro A, Stevens MP, Tserng KY, et al. Model of extreme hypoglycemia in dogs made ketotic with (R, S)-1,3-butanediol acetoacetate esters. Am J Phys. 1995;269(1 Pt 1):E67–75.
CAS
Google Scholar
Chance B, editor. Energy-Linked Functions of Mitochondria. New York: Academic; 1963.
Google Scholar
Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211–4.
Article
CAS
PubMed
Google Scholar
West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–9.
CAS
PubMed
PubMed Central
Google Scholar
Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, Buchhalter JR, Caraballo RH, Helen Cross J, Dahlin MG, et al. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50(2):304–17.
Article
PubMed
Google Scholar
Jang HJ, Boo HJ, Lee HJ, Min HY, Lee HY. Chronic Stress Facilitates Lung Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells. Cancer Res. 2016;76(22):6607–19.
Article
CAS
PubMed
Google Scholar
Feng Z, Liu L, Zhang C, Zheng T, Wang J, Lin M, Zhao Y, Wang X, Levine AJ, Hu W. Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc Natl Acad Sci U S A. 2012;109(18):7013–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rush SE, Sharma M. Mindfulness-Based Stress Reduction as a Stress Management Intervention for Cancer Care: A Systematic Review. J Evid Based Complementary Altern Med. 2014;19:271–86.
Lopes-Junior LC, Bomfim EO, Nascimento LC, Nunes MD, Pereira-da-Silva G, Lima RA. Non-pharmacological interventions to manage fatigue and psychological stress in children and adolescents with cancer: an integrative review. Eur J Cancer Care (Engl). 2016;25(6):921–35.
Article
CAS
Google Scholar
Bradt J, Dileo C, Magill L, Teague A. Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. 2016;8:CD006911.
Google Scholar
Levin GT, Greenwood KM, Singh F, Tsoi D, Newton RU. Exercise Improves Physical Function and Mental Health of Brain Cancer Survivors: Two Exploratory Case Studies. Integr Cancer Ther. 2016;15(2):190–6.
Article
PubMed
Google Scholar
Ari C, Kovacs Z, Juhasz G, Murdun C, Goldhagen CR, Koutnik AM, Poff AM, Kesl SL, D’Agostino DP. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague–Dawley and Wistar Albino Glaxo/Rijswijk Rats. Front Mol Neurosci. 2016;9:137.
Article
PubMed
PubMed Central
Google Scholar
Meynet O, Ricci JE. Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol Med. 2014;20(8):419–27.
Article
CAS
PubMed
Google Scholar
De Lorenzo MS, Baljinnyam E, Vatner DE, Abarzua P, Vatner SF, Rabson AB. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis. 2011;32(9):1381–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Wahab Z, Tebbe C, Chhina J, Dar SA, Morris RT, Ali-Fehmi R, Giri S, Munkarah AR, Rattan R. Dietary energy balance modulates ovarian cancer progression and metastasis. Oncotarget. 2014;5(15):6063–75.
Article
PubMed
PubMed Central
Google Scholar
Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY). 2009;1(12):988–1007.
Article
Google Scholar
Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008;105(24):8215–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raffaghello L, Safdie F, Bianchi G, Dorff T, Fontana L, Longo VD. Fasting and differential chemotherapy protection in patients. Cell Cycle. 2010;9(22):4474–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsh J, Mukherjee P, Seyfried TN. Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet. Nutr Metab (Lond). 2008;5:33.
Article
CAS
Google Scholar
Williams DS, Cash A, Hamadani L, Diemer T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell. 2009;8(6):765–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farah IO. Differential modulation of intracellular energetics in A549 and MRC-5 cells. Biomed Sci Instrum. 2007;43:110–5.
CAS
PubMed
Google Scholar
Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46.
Article
CAS
PubMed
Google Scholar
Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139(Pt 5):1458–71.
Article
PubMed
Google Scholar
Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356(2 Pt A):289–300.
Article
CAS
PubMed
Google Scholar
Seyfried TN, Shelton LM, Mukherjee P. Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncol. 2010;11(9):811–3.
Article
PubMed
Google Scholar
Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer--a review. Target Oncol. 2012;7(4):233–42.
Article
PubMed
PubMed Central
Google Scholar
Kohshi K, Beppu T, Tanaka K, Ogawa K, Inoue O, Kukita I, Clarke RE. Potential roles of hyperbaric oxygenation in the treatments of brain tumors. UHM. 2013;40(4):351–62.
Google Scholar
Poff AM, Kernagis D, D’Agostino DP. Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Comp Physiology. 2017;7(January 2017):213–34.
Google Scholar
D’Agostino DP, Colomb Jr DG, Dean JB. Effects of hyperbaric gases on membrane nanostructure and function in neurons. J Appl Physiol. 2009;106(3):996–1003.
Article
PubMed
Google Scholar
Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6(222):222ra218.
Article
CAS
Google Scholar
Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31):31ra34.
Article
CAS
PubMed
Google Scholar
Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016;24(2):256–68.
Article
CAS
PubMed
Google Scholar
Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K, Pichulik T, Gulston MK, Atherton HJ, Schroeder MA, et al. Novel ketone diet enhances physical and cognitive performance. FASEB J. 2016;30(12):4021–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669–76.
CAS
PubMed
Google Scholar
Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 2010;9(19):3884–6.
Article
CAS
PubMed
Google Scholar
Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin SD, La Rocca G, Lyashchenko S, Ploessl K, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7(274):274ra217.
Article
CAS
Google Scholar
Mueller C, Al-Batran S, Jaeger E, Schmidt B, Bausch M, Unger C, Sethuraman N. A phase IIa study of PEGylated glutaminase (PEG-PGA) plus 6-diazo-5-oxo-L-norleucine (DON) in patients with advanced refractory solid tumors. J Clin Oncol. 2008;26:2533. In: ASCO.
CAS
Google Scholar
Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y, Burma S, Scaglioni PP, et al. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ss-lapachone. Cancer & metabolism. 2015;3:12.
Article
Google Scholar
Mates JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, Marquez J. Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol. 2009;41(10):2051–61.
Article
CAS
PubMed
Google Scholar
Michalak KP, Mackowska-Kedziora A, Sobolewski B, Wozniak P. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism. Oxid Med Cell Longev. 2015;2015:964321.
Article
PubMed
PubMed Central
Google Scholar
Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM, Seyfried TN. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int J Cancer. 2008;123(1):73–84.
Article
CAS
PubMed
Google Scholar
Shelton LM, Mukherjee P, Huysentruyt LC, Urits I, Rosenberg JA, Seyfried TN. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol. 2010;99(2):165–76.
Article
CAS
PubMed
Google Scholar
Huysentruyt LC, Shelton LM, Seyfried TN. Influence of methotrexate and cisplatin on tumor progression and survival in the VM mouse model of systemic metastatic cancer. Int J Cancer. 2010;126(1):65–72.
Article
CAS
PubMed
Google Scholar
Hamilton JD, Rapp M, Schneiderhan T, Sabel M, Hayman A, Scherer A, Kropil P, Budach W, Gerber P, Kretschmar U, et al. Glioblastoma multiforme metastasis outside the CNS: three case reports and possible mechanisms of escape. J Clin Oncol. 2014;32(22):e80–84.
Article
PubMed
Google Scholar
Hoffman HJ, Duffner PK. Extraneural metastases of central nervous system tumors. Cancer. 1985;56(7 Suppl):1778–82.
Article
CAS
PubMed
Google Scholar
Xu M, Wang Y, Xu J, Yao Y, Yu WX, Zhong P. Extensive Therapies for Extraneural Metastases from Glioblastoma, as Confirmed with the OncoScan Assay. World Neurosurg. 2016;90:698 e697–11.
Article
Google Scholar
Yasuhara T, Tamiya T, Meguro T, Ichikawa T, Sato Y, Date I, Nakashima H, Ohmoto T. Glioblastoma with metastasis to the spleen--case report. Neurol Med Chir (Tokyo). 2003;43(9):452–6.
Article
Google Scholar
Kalokhe G, Grimm SA, Chandler JP, Helenowski I, Rademaker A, Raizer JJ. Metastatic glioblastoma: case presentations and a review of the literature. J Neurooncol. 2012;107(1):21–7.
Article
PubMed
Google Scholar
Huysentruyt LC, Akgoc Z, Seyfried TN. Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? ASN neuro. 2011;3(4):AN20110011.
Article
Google Scholar
Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr. 2001;131(9 Supp):2515–2522S. discussion 2523S-2514S.
Google Scholar
Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN neuro. 2010;2(3):e00038.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seyfried TN. Metabolic management of cancer. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 291–354.
Chapter
Google Scholar
Arismendi-Morillo G. Electron microscopy morphology of the mitochondrial network in human cancer. Int J Biochem Cell Biol. 2009;41(10):2062–8.
Article
CAS
PubMed
Google Scholar
Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160–71.
Article
CAS
PubMed
PubMed Central
Google Scholar