Nicholson HS, Kretschmar CS, Krailo M, Bernstein M, Kadota R, Fort D, Friedman H, Harris MB, Tedeschi-Blok N, Mazewski C, Sato J, Reaman GH: Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children's Oncology Group. Cancer 2007, 110: 1542-1550.
Article
CAS
Google Scholar
Lowry JK, Snyder JJ, Lowry PW: Brain tumors in the elderly: recent trends in a Minnesota cohort study. Arch Neurol 1998, 55: 922-928.
Article
CAS
Google Scholar
Fisher PG, Buffler PA: Malignant gliomas in 2005: where to GO from here? Jama 2005, 293: 615-617.
Article
CAS
Google Scholar
Jukich PJ, McCarthy BJ, Surawicz TS, Freels S, Davis FG: Trends in incidence of primary brain tumors in the United States, 1985–1994. Neuro-oncol 2001, 3: 141-151.
CAS
Google Scholar
Marsh J, Mukherjee P, Seyfried TN: Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a PTEN/TSC2-deficient mouse astrocytoma. Clin Cancer Res 2008,14(23):7751-7762.
Article
CAS
Google Scholar
Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN: Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 2008.
Google Scholar
Warburg O: The Metabolism of Tumours. Edited by: . New York, Richard R Smith; 1931.
Google Scholar
Warburg O: On the origin of cancer cells. Science 1956, 123: 309-314.
Article
CAS
Google Scholar
Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2005, 2: 30.
Article
Google Scholar
Freeman JM, Kossoff EH, Freeman JB, Kelly MT: The Ketogenic Diet: A Treatment for Children and Others with Epilepsy. Fourth edition. New York, Demos; 2007.
Google Scholar
Veech RL: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 309-319.
Article
CAS
Google Scholar
Prins ML: Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab 2008, 28: 1-16.
Article
CAS
Google Scholar
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN: Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond) 2004, 1: 11.
Article
Google Scholar
Hartman AL, Vining EP: Clinical aspects of the ketogenic diet. Epilepsia 2007, 48: 31-42.
Article
CAS
Google Scholar
Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P: Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 2003, 89: 1375-1382.
Article
CAS
Google Scholar
Yamada KA, Rensing N, Thio LL: Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 2005, 385: 210-214.
Article
CAS
Google Scholar
Gasior M, Rogawski MA, Hartman AL: Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol 2006, 17: 431-439.
Article
CAS
Google Scholar
Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN: The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 2007, 4: 5.
Article
Google Scholar
Greene AE, Todorova MT, Seyfried TN: Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 2003, 86: 529-537.
Article
CAS
Google Scholar
Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995, 14: 202-208.
Article
CAS
Google Scholar
Zhu Z, Jiang W, McGinley JN, Thompson HJ: 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer research 2005, 65: 7023-7030.
Article
CAS
Google Scholar
Aft RL, Zhang FW, Gius D: Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer 2002, 87: 805-812.
Article
CAS
Google Scholar
Singh D, Banerji AK, Dwarakanath BS, Tripathi RP, Gupta JP, Mathew TL, Ravindranath T, Jain V: Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol 2005, 181: 507-514.
Article
Google Scholar
Lin X, Zhang F, Bradbury CM, Kaushal A, Li L, Spitz DR, Aft RL, Gius D: 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 2003, 63: 3413-3417.
CAS
Google Scholar
Laszio J, Humphreys SR, Goldin A: Effects of glucose analogues (2-deoxy-D-glucose, 2-deoxy-D-galactose) on experimental tumors. J Natl Cancer Inst 1960, 24: 267-281.
Google Scholar
Kang HT, Hwang ES: 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 2006, 78: 1392-1399.
Article
CAS
Google Scholar
Dills WL Jr, Kwong E, Covey TR, Nesheim MC: Effects of diets deficient in glucose and glucose precursors on the growth of the Walker carcinosarcoma 256 in rats. J Nutr 1984, 114: 2097-2106.
CAS
Google Scholar
Cay O, Radnell M, Jeppsson B, Ahren B, Bengmark S: Inhibitory effect of 2-deoxy-D-glucose on liver tumor growth in rats. Cancer Res 1992, 52: 5794-5796.
CAS
Google Scholar
Landau BR, Laszlo J, Stengle J, Burk D: Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst 1958, 21: 485-494.
CAS
Google Scholar
Flavin HJ, Wieraszko A, Seyfried TN: Enhanced aspartate release from hippocampal slices of epileptic (El) mice. J Neurochem 1991, 56: 1007-1011.
Article
CAS
Google Scholar
Seyfried TN, el-Abbadi M, Roy ML: Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 1992, 17: 147-167.
Article
CAS
Google Scholar
Seyfried TN, Mukherjee P: Anti-Angiogenic and Pro-Apoptotic Effects of Dietary Restriction in Experimental Brain Cancer: Role of Glucose and Ketone Bodies. In Integration/Interaction of Oncologic Growth. Cancer Growth and Progression. Volume 15. Edited by: Meadows GG. New York: Kluwer Academic; 2005:259-270.
Chapter
Google Scholar
Tannenbaum A: The genesis and growth of tumors: II. Effects of caloric restriction per se. Cancer Res 1942, 2: 460-467.
CAS
Google Scholar
Tannenbaum A: Nutrition and cancer. In Physiopathology of Cancer. Edited by: Homburger F. NY: Paul B. Hober; 1959:517-562.
Google Scholar
Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 2004, 10: 5622-5629.
Article
CAS
Google Scholar
Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer 2002, 86: 1615-1621.
Article
CAS
Google Scholar