Ruggiero A, Cefalo G, Garre ML, Massimino M, Colosimo C, Attina G: Phase II trial of temozolomide in children with recurrent high-grade glioma. J Neurooncol. 2005, 1-6.
Google Scholar
Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P: Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003, 89: 1375-1382. 10.1038/sj.bjc.6601269.
Article
CAS
Google Scholar
Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995, 14: 202-208.
Article
CAS
Google Scholar
Nebeling LC, Lerner E: Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. J Am Diet Assoc. 1995, 95: 693-697. 10.1016/S0002-8223(95)00189-1.
Article
CAS
Google Scholar
Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P: Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutrition and Metabolism. 2010, 7: 33-53. 10.1186/1743-7075-7-33.
Article
Google Scholar
Gasior M, Rogawski MA, Hartman AL: Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006, 17: 431-439. 10.1097/00008877-200609000-00009.
Article
CAS
Google Scholar
Kim DY, Rho JM: The ketogenic diet and epilepsy. Curr Opin Clin Nutr Metab Care. 2008, 11: 113-120. 10.1097/MCO.0b013e3282f44c06.
Article
CAS
Google Scholar
Fruehauf JP, Meyskens FL: Reactive oxygen species: a breath of life or death?. Clin Cancer Res. 2007, 13: 789-794. 10.1158/1078-0432.CCR-06-2082.
Article
CAS
Google Scholar
Weinberg F, Chandel NS: Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009, 66: 3663-3673. 10.1007/s00018-009-0099-y.
Article
CAS
Google Scholar
Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N: The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res. 2006, 12: 4730-4737. 10.1158/1078-0432.CCR-06-0593.
Article
CAS
Google Scholar
Jouanneau E, Poujol D, Gulia S, Le M, Blay JY, Belin MF: Dendritic cells are essential for priming but inefficient for boosting antitumour immune response in an orthotopic murine glioma model. Cancer Immunol Immunother. 2006, 55: 254-267. 10.1007/s00262-005-0040-7.
Article
CAS
Google Scholar
Rho JM, Kim DW, Robbins CA, Anderson GD, Schwartzkroin PA: Age-dependent differences in flurothyl seizure sensitivity in mice treated with a ketogenic diet. Epilepsy Res. 1999, 37: 233-240. 10.1016/S0920-1211(99)00068-6.
Article
CAS
Google Scholar
Rho JM, Sarnat HB, Sullivan PG, Robbins CA, Kim DW: Lack of long-term histopathologic changes in brain and skeletal muscle of mice treated with a ketogenic diet. J Child Neurol. 2004, 19: 555-557.
Google Scholar
Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM: Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007, 145: 256-264. 10.1016/j.neuroscience.2006.11.065.
Article
CAS
Google Scholar
Stafford P, Brun M: Three methods for optimization of cross-laboratory and cross-platform microarray expression data. Nucl Acids Res. 2007, 35: e72-10.1093/nar/gkl1133.
Article
Google Scholar
Newcomb EW, Tamasdan C, Entzminger Y, Arena E, Schnee T, Kim M: Flavopiridol inhibits the growth of GL261 gliomas in vivo: implications for malignant glioma therapy. Cell Cycle. 2004, 3: 230-234.
Article
CAS
Google Scholar
Newcomb EW, Lymberis SC, Lukyanov Y, Shao Y, Schnee T, Devitt M: Radiation Sensitivity of GL261 Murine Glioma Model and Enhanced Radiation Response by Flavopiridol. Cell Cycle. 2006, 5: 93-99. 10.4161/cc.5.1.2271.
Article
CAS
Google Scholar
Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H: Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci. 2006, 97: 546-553. 10.1111/j.1349-7006.2006.00208.x.
Article
CAS
Google Scholar
Pyles RB, Chalk CL, Balko MG, Miller MA, Dyer CA: A syngeneic mouse glioma model for study of glioblastoma therapy. J Neuropath Exp Neurol. 1999, 58: 54-60. 10.1097/00005072-199901000-00007.
Article
Google Scholar
Laughlin KM, Luo D, Liu C, Shaw G, Warrington KH, Qiu J: Hematopoietic- and Neurologic-Expressed Sequence 1 Expression in the Murine GL261 and High-Grade Human Gliomas. Pathol Oncol Res. 2009, 15: 12253-12267. 10.1007/s12253-008-9147-4.
Article
Google Scholar
Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutrition and Metabolism. 2005, 2: 30-38. 10.1186/1743-7075-2-30.
Article
Google Scholar
Mahoney LB, Denny CA, Seyfried TN: Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis. 2006, 5: 13-10.1186/1476-511X-5-13.
Article
Google Scholar
Vamecq J, Vallee L, Lesage F, Gressens P, Stables JP: Antiepileptic popular ketogenic diet: emerging twists in an ancient story. Prog Neurobiol. 2005, 75: 1-28. 10.1016/j.pneurobio.2004.11.003.
Article
CAS
Google Scholar
Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W: Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson's disease. Brain Res Bull. 2006, 69: 318-326. 10.1016/j.brainresbull.2005.12.009.
Article
CAS
Google Scholar
Freemantle E, Vandal M, Tremblay-Mercier J, Tremblay S, Blachere JC, Begin ME: Omega-3 fatty acids, energy substrates, and brain function during aging. Prostaglandins Leukot Essent Fatty Acids. 2006, 75: 213-220. 10.1016/j.plefa.2006.05.011.
Article
CAS
Google Scholar
Jabre MG, Bejjani BP: Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology. 2006, 66: 617-10.1212/01.wnl.0000216108.57529.b1.
Article
Google Scholar
Liao Y, Takashima S, Zhao H, Asano Y, Shintani Y, Minamino T: Control of plasma glucose with alpha-glucosidase inhibitor attenuates oxidative stress and slows the progression of heart failure in mice. Cardiovasc Res. 2006, 70: 107-116. 10.1016/j.cardiores.2006.01.021.
Article
CAS
Google Scholar
Prins ML, Fujima LS, Hovda DA: Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res. 2005, 82: 413-420. 10.1002/jnr.20633.
Article
CAS
Google Scholar
Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J: A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006, 7: 29-10.1186/1471-2202-7-29.
Article
Google Scholar
Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002, 86: 1615-1621. 10.1038/sj.bjc.6600298.
Article
CAS
Google Scholar
Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004, 10: 5622-5629. 10.1158/1078-0432.CCR-04-0308.
Article
CAS
Google Scholar
Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN: Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer. 2008, 7: 37-10.1186/1476-4598-7-37.
Article
Google Scholar
Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y: Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005, 26: 1401-1410.
CAS
Google Scholar
Tabernero A, Medina JM, Giaume C: Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem. 2006, 99: 1049-1061. 10.1111/j.1471-4159.2006.04088.x.
Article
CAS
Google Scholar
Marsh J, Mukherjee P, Seyfried TN: Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet. Nutr Metab (Lond). 2008, 5: 33-10.1186/1743-7075-5-33.
Article
Google Scholar
Noh HS, Lee HP, Kim DW, Kang SS, Cho GJ, Rho JM: A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. Brain Res Mol Brain Res. 2004, 129: 80-87.
Article
CAS
Google Scholar
Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG: Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006, 60: 223-235. 10.1002/ana.20899.
Article
CAS
Google Scholar
Kennedy AR, Pissios P, Otu H, Xue B, Asakura K, Furukawa N: A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 2007, 292: E1724-E1739. 10.1152/ajpendo.00717.2006.
Article
CAS
Google Scholar
Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X: Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 2008, 74: 403-412. 10.1124/mol.108.044826.
Article
CAS
Google Scholar
Erol E, Kumar LS, Cline GW, Shulman GI, Kelly DP, Binas B: Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice. FASEB J. 2004, 18: 347-349.
CAS
Google Scholar
Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM: The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004, 55: 576-580. 10.1002/ana.20062.
Article
CAS
Google Scholar
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR: Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009, 418: 29-37. 10.1042/BJ20081258.
Article
CAS
Google Scholar
Landriscina M, Maddalena F, Laudiero G, Esposito F: Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal. 2009, 11: 2701-2716. 10.1089/ars.2009.2692.
Article
CAS
Google Scholar
Semenza GL: Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009, 19: 12-16. 10.1016/j.semcancer.2008.11.009.
Article
CAS
Google Scholar
Trachootham D, Alexandre J, Huang P: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov. 2009, 8: 579-591. 10.1038/nrd2803.
Article
CAS
Google Scholar
Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB: Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008, 15: 171-182. 10.1038/sj.cdd.4402233.
Article
CAS
Google Scholar
Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A: Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res. 2006, 4: 471-479. 10.1158/1541-7786.MCR-05-0234.
Article
CAS
Google Scholar
Giglio P, Levin V: Cyclooxygenase-2 inhibitors in glioma therapy. Am J Ther. 2004, 11: 141-143. 10.1097/00045391-200403000-00009.
Article
Google Scholar
Mattila S, Tuominen H, Koivukangas J, Stenback F: The terminal prostaglandin synthases mPGES-1, mPGES-2, and cPGES are all overexpressed in human gliomas. Neuropathology. 2009, 29: 156-165. 10.1111/j.1440-1789.2008.00963.x.
Article
Google Scholar
Schonthal AH: Antitumor properties of dimethyl-celecoxib, a derivative of celecoxib that does not inhibit cyclooxygenase-2: implications for glioma therapy. Neurosurg Focus. 2006, 20: E21-10.3171/foc.2006.20.4.14.
Article
Google Scholar
Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M: The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010, 215158-Epub@2010 Mar 17
Google Scholar
Kim CK, Joe YA, Lee SK, Kim EK, O E, Kim HK: Enhancement of anti-tumor activity by low-dose combination of the recombinant urokinase kringle domain and celecoxib in a glioma model. Cancer Lett. 2010, 288: 251-260. 10.1016/j.canlet.2009.07.008.
Article
CAS
Google Scholar
Utomo A, Jiang X, Furuta S, Yun J, Levin DS, Wang YC: Identification of a novel putative non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) essential for alleviating oxidative stress generated from polyunsaturated fatty acids in breast cancer cells. J Biol Chem. 2004, 279: 43522-43529. 10.1074/jbc.M407141200.
Article
CAS
Google Scholar
Okado-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N: Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions. Journal of Biochemistry. 2000, 127: 493-501.
Article
CAS
Google Scholar
Ziegler DR, Ribeiro LC, Hagenn M, Siqueira IR, Araujo E, Torres IL: Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem Res. 2003, 28: 1793-1797. 10.1023/A:1026107405399.
Article
CAS
Google Scholar
Li D, Chen XQ, Li WJ, Yang YH, Wang JZ, Yu AC: Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res. 2007, 32: 1375-1380. 10.1007/s11064-007-9317-x.
Article
CAS
Google Scholar
Shivapurkar N, Stastny V, Okumura N, Girard L, Xie Y, Prinsen C: Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene. Cancer Res. 2008, 68: 7448-7456. 10.1158/0008-5472.CAN-08-0565.
Article
CAS
Google Scholar
Cheng G, Lambeth JD: NOXO1, Regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem. 2004, 279: 4737-4742. 10.1074/jbc.M305968200.
Article
CAS
Google Scholar
Polytarchou C, Pfau R, Hatziapostolou M, Tsichlis PN: The JmjC domain histone demethylase Ndy1 regulates redox homeostasis and protects cells from oxidative stress. Molecular and Cellular Biology. 2008, 28: 7451-7464. 10.1128/MCB.00688-08.
Article
CAS
Google Scholar
Comments
View archived comments (1)