Jaacks LM, Siegel KR, Gujral UP, Narayan KM. Type 2 diabetes: a 21st century epidemic. Best Pract Res Clin Endocrinol Metab. 2016;30(3):331–43.
Article
PubMed
Google Scholar
Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes. 2013;4(5):177–89.
Article
PubMed
PubMed Central
Google Scholar
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J. 2016;24(5):547–53.
Article
PubMed
Google Scholar
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol. 2018;359:24–33.
Article
CAS
PubMed
Google Scholar
Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharmacal Res. 2020;43(3):286–96.
Article
CAS
Google Scholar
Zhou J, Wang T, Wang H, Jiang Y, Peng S. Obacunone attenuates high glucose-induced oxidative damage in NRK-52E cells by inhibiting the activity of GSK-3β. Biochem Biophys Res Commun. 2019;513(1):226–33.
Article
CAS
PubMed
Google Scholar
Wang F, Xi Y, Liu W, Li J, Zhang Y, Jia M, He Q, Zhao H, Wang S. Sanbai melon seed oil exerts its protective effects in a diabetes mellitus model via the Akt/GSK-3β/Nrf2 pathway. J Diabetes Res. 2019;2019:5734723.
PubMed
PubMed Central
Google Scholar
Yagishita Y, Fukutomi T, Sugawara A, Kawamura H, Takahashi T, Pi J, Uruno A, Yamamoto M. Nrf2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes. 2014;63(2):605–18.
Article
CAS
PubMed
Google Scholar
Stancill JS, Happ JT, Broniowska KA, Hogg N, Corbett JA. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am J Physiol Regul Integr Comp Physiol. 2020;318(5):R1004-r1013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meher AK, Sharma PR, Lira VA, Yamamoto M, Kensler TW, Yan Z, Leitinger N. Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med. 2012;52(9):1708–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin S, Hou DX. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res. 2016;60(8):1731–55.
Article
CAS
PubMed
Google Scholar
Furusawa Y, Uruno A, Yagishita Y, Higashi C, Yamamoto M. Nrf2 induces fibroblast growth factor 21 in diabetic mice. Genes Cells. 2014;19(12):864–78.
Article
CAS
PubMed
Google Scholar
Iizuka K, Takeda J, Horikawa Y. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 2009;583(17):2882–6.
Article
CAS
PubMed
Google Scholar
Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie. 2013;95(4):692–9.
Article
CAS
PubMed
Google Scholar
Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs: Clin Immunother Biopharm Gene Therapy. 2008;22(1):37–44.
Article
CAS
Google Scholar
Pan Y, Wang B, Zheng J, Xiong R, Fan Z, Ye Y, Zhang S, Li Q, Gong F, Wu C, et al. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner. J Cell Mol Med. 2019;23(2):1059–71.
Article
CAS
PubMed
Google Scholar
Babaknejad N, Nayeri H, Hemmati R, Bahrami S, Esmaillzadeh A. An overview of FGF19 and FGF21: the therapeutic role in the treatment of the metabolic disorders and obesity. Horm Metab Res. 2018;50(6):441–52.
Article
CAS
PubMed
Google Scholar
Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci. 2021;11(1):77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8(1):240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujimoto K, Polonsky KS. Pdx1 and other factors that regulate pancreatic beta-cell survival. Diabetes Obes Metab. 2009;11(Suppl 4):30–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balakrishnan S, Dhavamani S, Prahalathan C. β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev. 2020;163: 103634.
Article
CAS
PubMed
Google Scholar
Bule M, Nikfar S, Amini M, Abdollahi M. The antidiabetic effect of thymoquinone: a systematic review and meta-analysis of animal studies. Food Res Int. 2020;127: 108736.
Article
CAS
PubMed
Google Scholar
Salehi B, Quispe C, Imran M, Ul-Haq I, Živković J, Abu-Reidah IM, Sen S, Taheri Y, Acharya K, Azadi H, et al. Nigella plants—traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Front Pharmacol. 2021;12: 625386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamdan A, Haji Idrus R, Mokhtar MH. Effects of Nigella sativa on type-2 diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2019;16(24):4911.
Article
CAS
PubMed Central
Google Scholar
Champasuri S, Itharat A. Bioactivities of ethanolic extracts of three parts (wood, nutmeg and mace) from Myristica fragrans Houtt. J Med Assoc Thailand = Chotmaihet thangphaet. 2016;99(Suppl 4):S124-130.
Google Scholar
Eguchi K, Tomizawa H, Ishikawa J, Hoshide S, Numao T, Fukuda T, Shimada K, Kario K. Comparison of the effects of pioglitazone and metformin on insulin resistance and hormonal markers in patients with impaired glucose tolerance and early diabetes. Hypertens Res: Off J Jpn Soc Hypertens. 2007;30(1):23–30.
Article
CAS
Google Scholar
Chen H, Sullivan G, Yue LQ, Katz A, Quon MJ. QUICKI is a useful index of insulin sensitivity in subjects with hypertension. Am J Physiol Endocrinol Metab. 2003;284(4):E804-812.
Article
CAS
PubMed
Google Scholar
Sudan R, Bhagat M, Gupta S, Singh J, Koul A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). Biomed Res Int. 2014;2014: 179865.
Article
PubMed
PubMed Central
Google Scholar
Hsieh CY, Chen CL, Yang KC, Ma CT, Choi PC, Lin CF. Detection of reactive oxygen species during the cell cycle under normal culture conditions using a modified fixed-sample staining method. J Immunoassay Immunochem. 2015;36(2):149–61.
Article
CAS
PubMed
Google Scholar
Garcia YJ, Rodríguez-Malaver AJ, Peñaloza N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J Neurosci Methods. 2005;144(1):127–35.
Article
CAS
PubMed
Google Scholar
Maideen NMP. Antidiabetic activity of Nigella sativa (black seeds) and its active constituent (Thymoquinone): a review of human and experimental animal studies. Chonnam Med J. 2021;57(3):169–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghiasi R, Ghadiri Soufi F, Somi MH, Mohaddes G, Mirzaie Bavil F, Naderi R, Alipour MR. Swim training improves HOMA-IR in type 2 diabetes induced by high fat diet and low dose of streptozotocin in male rats. Adv Pharm Bull. 2015;5(3):379–84.
Article
PubMed
PubMed Central
Google Scholar
Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab. 2008;295(5):E1269-1276.
Article
CAS
PubMed
Google Scholar
Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. phytochemistry and pharmacological activities: a review (2019–2021). Biomolecules. 2021;12(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Bai T, Yao YL, Zhang DQ, Wu YL, Lian LH, Nan JX. Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol Lett. 2016;262:80–91.
Article
CAS
PubMed
Google Scholar
Abdelmeguid NE, Fakhoury R, Kamal SM, Al Wafai RJ. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes. 2010;2(4):256–66.
Article
CAS
PubMed
Google Scholar
El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. Pharmacotherapy with thymoquinone improved pancreatic β-cell integrity and functional activity, enhanced islets revascularization, and alleviated metabolic and hepato-renal disturbances in streptozotocin-induced diabetes in rats. Pharmacology. 2018;101(1–2):9–21.
Article
PubMed
Google Scholar
Pelegrin S, Galtier F, Chalançon A, Gagnol JP, Barbanel AM, Pélissier Y, Larroque M, Lepape S, Faucanié M, Gabillaud I, et al. Effects of Nigella sativa seeds (black cumin) on insulin secretion and lipid profile: a pilot study in healthy volunteers. Br J Clin Pharmacol. 2019;85(7):1607–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213–8609213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hay N. Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta. 2011;1813(11):1965–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55(9):2470–8.
Article
CAS
PubMed
Google Scholar
Kitakaze K, Oyadomari M, Zhang J, Hamada Y, Takenouchi Y, Tsuboi K, Inagaki M, Tachikawa M, Fujitani Y, Okamoto Y, et al. ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. Mol Metab. 2021;54: 101338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuoka TA, Kawashima S, Miyatsuka T, Sasaki S, Shimo N, Katakami N, Kawamori D, Takebe S, Herrera PL, Kaneto H, et al. Mafa enables Pdx1 to effectively convert pancreatic islet progenitors and committed islet α-cells into β-cells in vivo. Diabetes. 2017;66(5):1293–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwaoka R, Kataoka K. Glucose regulates MafA transcription factor abundance and insulin gene expression by inhibiting AMP-activated protein kinase in pancreatic β-cells. J Biol Chem. 2018;293(10):3524–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, Accili D. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005;2(3):153–63.
Article
CAS
PubMed
Google Scholar
Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 2012;4(9): a011189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 2009;296(4):E581-591.
Article
CAS
PubMed
Google Scholar
Nelson KJ, Bolduc JA, Wu H, Collins JA, Burke EA, Reisz JA, Klomsiri C, Wood ST, Yammani RR, Poole LB, et al. H(2)O(2) oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J Biol Chem. 2018;293(42):16376–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T. Matsuoka T-a: Involvement of oxidative stress and the JNK pathway in glucose toxicity. Rev Diabet Stud. 2004;1(4):165–74.
Article
PubMed
Google Scholar
El Khattabi I, Sharma A. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress. Mol Endocrinol. 2013;27(7):1078–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–75.
Article
CAS
PubMed
Google Scholar