Stipanuk MH: Leucine and protein synthesis: mTOR and beyond. Nutr Rev. 2007, 65 (3): 122-129. 10.1111/j.1753-4887.2007.tb00289.x.
Article
Google Scholar
Zanchi NE, Nicastro H, Lancha AH: Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies. Nutr Metab (Lond). 2008, 5: 20-10.1186/1743-7075-5-20.
Article
Google Scholar
Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC: Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab. 2002, 283 (3): E503-E513.
Article
CAS
Google Scholar
Sun X, Zemel M: Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids. 2007, 42 (4): 297-305. 10.1007/s11745-007-3029-5.
Article
CAS
Google Scholar
Sun X, Zemel MB: Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond). 2009, 6: 26-10.1186/1743-7075-6-26.
Article
Google Scholar
Donato J, Pedrosa RG, Cruzat VF, Pires IS, Tirapegui J: Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition. 2006, 22 (5): 520-527. 10.1016/j.nut.2005.12.008.
Article
CAS
Google Scholar
Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH: Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007, 56 (6): 1647-1654. 10.2337/db07-0123.
Article
CAS
Google Scholar
Bruckbauer A, Zemel MB: Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr Metab (Lond). 2011, 8: 91-10.1186/1743-7075-8-91.
Article
CAS
Google Scholar
Bruckbauer A, Gouffon J, Rekapalli B, Zemel MB: The effects of dairy components on energy partitioning and metabolic risk in mice: a microarray study. J Nutrigenet Nutrigenomics. 2009, 2 (2): 64-77. 10.1159/000205936.
Article
CAS
Google Scholar
Haigis MC, Guarente LP: Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006, 20 (21): 2913-2921. 10.1101/gad.1467506.
Article
CAS
Google Scholar
Verdin E, Hirschey MD, Finley LW, Haigis MC: Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010, 35 (12): 669-675. 10.1016/j.tibs.2010.07.003.
Article
CAS
Google Scholar
Carafa V, Nebbioso A, Altucci L: Sirtuins and disease: the road ahead. Front Pharmacol. 2012, 3: 4-
Article
CAS
Google Scholar
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23 (12): 2369-2380. 10.1038/sj.emboj.7600244.
Article
CAS
Google Scholar
Nemoto S, Fergusson MM, Finkel T: SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005, 280 (16): 16456-16460. 10.1074/jbc.M501485200.
Article
CAS
Google Scholar
Martinez-Pastor B, Mostoslavsky R: Sirtuins, metabolism, and cancer. Front Pharmacol. 2012, 3: 22-
Article
CAS
Google Scholar
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q: SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007, 6 (4): 307-319. 10.1016/j.cmet.2007.08.014.
Article
CAS
Google Scholar
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K: Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006, 444 (7117): 337-342. 10.1038/nature05354.
Article
CAS
Google Scholar
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006, 127 (6): 1109-1122. 10.1016/j.cell.2006.11.013.
Article
CAS
Google Scholar
Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012, 148 (3): 421-433. 10.1016/j.cell.2012.01.017.
Article
CAS
Google Scholar
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS: SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab. 2012, 15 (5): 675-690. 10.1016/j.cmet.2012.04.003.
Article
CAS
Google Scholar
Baur JA, Sinclair DA: Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006, 5 (6): 493-506. 10.1038/nrd2060.
Article
CAS
Google Scholar
Crandall JP, Oram V, Trandafirescu G, Reid M, Kishore P, Hawkins M, Cohen HW, Barzilai N: Pilot Study of Resveratrol in Older Adults With Impaired Glucose Tolerance. J Gerontol A Biol Sci Med Sci. 2012, 10.1093/gerona/glr235.
Google Scholar
Mukherjee S, Dudley JI, Das DK: Dose-dependency of resveratrol in providing health benefits. Dose–response. 2010, 8 (4): 478-500. 10.2203/dose-response.09-015.Mukherjee.
CAS
Google Scholar
Timmer S, Auwerx J, Schrauwen P: The journey of resveratrol from yeast to human. Aging (Albany NY). 2012, 4 (3): 146-158.
Google Scholar
Smoliga JM, Vang O, Baur JA: Challenges of translating basic research into therapeutics: resveratrol as an example. J Gerontol A Biol Sci Med Sci. 2011, 67 (2): 158-167.
Google Scholar
Smoliga JM, Baur JA, Hausenblas HA: Resveratrol and health–a comprehensive review of human clinical trials. Mol Nutr Food Res. 2011, 55 (8): 1129-1141. 10.1002/mnfr.201100143.
Article
CAS
Google Scholar
Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ: Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev. 2007, 16 (6): 1246-1252. 10.1158/1055-9965.EPI-07-0022.
Article
CAS
Google Scholar
Brand HS, Jorning GG, Chamuleau RA, Abraham-Inpijn L: Effect of a protein-rich meal on urinary and salivary free amino acid concentrations in human subjects. Clin Chim Acta. 1997, 264 (1): 37-47. 10.1016/S0009-8981(97)00070-3.
Article
CAS
Google Scholar
Almeida L, Vaz-da-Silva M, Falcao A, Soares E, Costa R, Loureiro AI, Fernandes-Lopes C, Rocha JF, Nunes T, Wright L: Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009, 53 (Suppl 1): S7-15.
Article
Google Scholar
Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C: A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008, 3 (6): e2264-10.1371/journal.pone.0002264.
Article
Google Scholar
Nin V, Escande C, Chini CC, Giri S, Camacho-Pereira J, Matalonga J, Lou Z, Chini EN: Role of Deleted in Breast Cancer 1 (DBC1) Protein in SIRT1 Deacetylase Activation Induced by Protein Kinase A and AMP-activated Protein Kinase. J Biol Chem. 2012, 287 (28): 23489-23501. 10.1074/jbc.M112.365874.
Article
CAS
Google Scholar
Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ, Stone CK: An evaluation of myocardial fatty acid and glucose uptake using PET with [18 F]fluoro-6-thia-heptadecanoic acid and [18 F]FDG in Patients with Congestive Heart Failure. J Nucl Med. 2001, 42 (1): 55-62.
CAS
Google Scholar
Guiducci L, Gronroos T, Jarvisalo MJ, Kiss J, Viljanen A, Naum AG, Viljanen T, Savunen T, Knuuti J, Ferrannini E: Biodistribution of the fatty acid analogue 18 F-FTHA: plasma and tissue partitioning between lipid pools during fasting and hyperinsulinemia. J Nucl Med. 2007, 48 (3): 455-462.
CAS
Google Scholar
LeBlanc AK, Akula M, Martin EB, Rowe JA, Galyon GD, Moyers TD, Stuckey AC, Long MJ, Wall JS, Kennel SJ: Whole-body distribution of 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid with Positron Emission Tomography/Computed Tomography (PET/CT) in domestic cats. World Molecular Imaging Congress. 2011, Poster Presentation with Abstract, San Diego, CA, September 7th - 10th
Google Scholar
Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL: Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology. 1999, 213 (2): 521-525.
Article
CAS
Google Scholar
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005, 434 (7029): 113-118. 10.1038/nature03354.
Article
CAS
Google Scholar
Yu J, Auwerx J: The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci. 2009, 1173 (Suppl 1): E10-19.
Article
CAS
Google Scholar
Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C: SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab. 2010, 298 (3): E419-428. 10.1152/ajpendo.00417.2009.
Article
CAS
Google Scholar
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007, 450 (7170): 712-716. 10.1038/nature06261.
Article
CAS
Google Scholar
Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008, 8 (2): 157-168. 10.1016/j.cmet.2008.06.011.
Article
CAS
Google Scholar
Kang W, Hong HJ, Guan J, Kim DG, Yang EJ, Koh G, Park D, Han CH, Lee YJ, Lee DH: Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents. Metabolism. 2012, 61 (3): 424-433. 10.1016/j.metabol.2011.08.003.
Article
CAS
Google Scholar
Robich MP, Osipov RM, Chu LM, Han Y, Feng J, Nezafat R, Clements RT, Manning WJ, Sellke FW: Resveratrol modifies risk factors for coronary artery disease in swine with metabolic syndrome and myocardial ischemia. Eur J Pharmacol. 2011, 664 (1–3): 45-53.
Article
CAS
Google Scholar
Brasnyo P, Molnar GA, Mohas M, Marko L, Laczy B, Cseh J, Mikolas E, Szijarto IA, Merei A, Halmai R: Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. 2011, 106 (3): 383-389. 10.1017/S0007114511000316.
Article
CAS
Google Scholar
Calabrese EJ, Mattson MP, Calabrese V: Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol. 2010, 29 (12): 980-1015. 10.1177/0960327110383625.
Article
CAS
Google Scholar
Cho SJ, Jung UJ, Choi MS: Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr. 2012, 1-10. 10.1017/S0007114512000347.
Google Scholar
Layman DK, Walker DA: Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr. 2006, 136 (1 Suppl): 319S-323S.
CAS
Google Scholar
Layman DK: The role of leucine in weight loss diets and glucose homeostasis. J Nutr. 2003, 133 (1): 261S-267S.
Google Scholar
Macotela Y, Emanuelli B, Bang AM, Espinoza DO, Boucher J, Beebe K, Gall W, Kahn R: Dietary Leucine - An Envrionmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism. PLoS One. 2011, 6 (6): e21187-10.1371/journal.pone.0021187.
Article
CAS
Google Scholar
Guo K, Yu YH, Hou J, Zhang Y: Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab (Lond). 2010, 7: 57-10.1186/1743-7075-7-57.
Article
Google Scholar
Freudenberg A, Petzke KJ, Klaus S: Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem. 2012, doi:10.1016/j.jnutbio.2011.10.005.
Google Scholar
Salminen A, Hyttinen JM, Kaarniranta K: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl). 2011, 89 (7): 667-676. 10.1007/s00109-011-0748-0.
Article
CAS
Google Scholar
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J: AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009, 458 (7241): 1056-1060. 10.1038/nature07813.
Article
CAS
Google Scholar
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002, 8 (11): 1288-1295. 10.1038/nm788.
Article
CAS
Google Scholar