USDA. Profiling Food Consumption in America. Agric Fact B. Washington D.C.: Office of Communications, U.S. Dept. of Agriculture; 2001. p. 13–22.
Google Scholar
Medina-Remón A, Kirwan R, Lamuela-Raventós RM, Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr. 2018;58:262–96.
Article
PubMed
Google Scholar
Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA. 2016;315:2284 Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2016.6458. [cited 2019 Jan 31].
Article
CAS
PubMed
Google Scholar
Gilani A, Pandey V, Garcia V, Agostinucci K, Singh SP, Schragenheim J, et al. High-fat diet-induced obesity and insulin resistance in CYP4A14 −/− mice is mediated by 20-HETE. Am J Physiol Integr Comp Physiol. 2018;315:R934–44.
Article
CAS
Google Scholar
Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J. 2014;13:1–17.
Article
CAS
Google Scholar
Bentsen H. Dietary polyunsaturated fatty acids, brain function and mental health. 2017;28:1281916 Available from: https://www.tandfonline.com/doi/full/10.1080/16512235.2017.1281916.
Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav. 2017;171:32–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28065722. [cited 2019 Jan 31].
Article
CAS
PubMed
PubMed Central
Google Scholar
Mocking RJT, Assies J, Ruhé HG, Schene AH. Focus on fatty acids in the neurometabolic pathophysiology of psychiatric disorders. J Inherit Metab Dis. 2018;41:597–611.
Article
CAS
PubMed
Google Scholar
Rashid MA, Katakura M, Kharebava G, Kevala K, Kim H-Y. N-docosahexaenoylethanolamine is a potent neurogenic factor for neural stem cell differentiation. J Neurochem. 2013;125:869–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adibhatla RM, Hatcher JF. Role of Lipids in brain injury and diseases. Future Lipidol. 2007;2:403–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanes O, Clark J, Wong DM, Patti GJ, Sánchez-Ruiz A, Benton HP, et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol. 2010;6:411–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J Clin Med. 2016;5:67 Available from: http://www.mdpi.com/2077-0383/5/8/67.
Article
PubMed Central
CAS
Google Scholar
Gouveia-Figueira S, Nording ML, Gaida JE, Forsgren S, Alfredson H, Fowler CJ. Serum levels of oxylipins in achilles tendinopathy: an exploratory study. PLoS One. 2015;10:1–17.
Google Scholar
Kaska L, Mika A, Stepnowski P, Proczko M, Ratnicki-Sklucki K, Sledzinski T, et al. The relationship between specific fatty acids of serum Lipids and serum high sensitivity C- reactive protein levels in morbidly obese women. Cell Physiol Biochem. 2014;34:1101–8.
Article
CAS
PubMed
Google Scholar
Lin P-Y, Huang S-Y, Su K-P. A meta-analytic review of polyunsaturated fatty Acid compositions in patients with depression. Biol Psychiatry. 2010;68:140–7.
Article
CAS
PubMed
Google Scholar
Hoen WP, Lijmer JG, Duran M, Wanders RJA, van Beveren NJM, de Haan L. Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: a meta-analysis. Psychiatry Res. 2013;207:1–12.
Article
CAS
PubMed
Google Scholar
Fusar-Poli P, Berger G. Eicosapentaenoic Acid interventions in schizophrenia. J Clin Psychopharmacol. 2012;32:179–85.
Article
CAS
PubMed
Google Scholar
de Vries G-J, Mocking R, Lok A, Assies J, Schene A, Olff M. Fatty acid concentrations in patients with posttraumatic stress disorder compared to healthy controls. J Affect Disord. 2016;205:351–9.
Article
PubMed
CAS
Google Scholar
Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid Med Cell Longev. 2014;2014:313570.
Article
PubMed
PubMed Central
CAS
Google Scholar
Portillo-Reyes V, Pérez-García M, Loya-Méndez Y, Puente AE. Clinical significance of neuropsychological improvement after supplementation with omega-3 in 8–12 years old malnourished Mexican children: a randomized, double-blind, placebo and treatment clinical trial. Res Dev Disabil. 2014;35:861–70.
Article
PubMed
Google Scholar
Witte AV, Kerti L, Hermannstädter HM, Fiebach JB, Schreiber SJ, Schuchardt JP, et al. Long-chain Omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex. 2014;24:3059–68.
Article
PubMed
Google Scholar
Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, Andres-Lacueva C, Bánáti D, Barberger-Gateau P, et al. Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev. 2017;35:222–40.
Article
PubMed
Google Scholar
Amminger GP, Schäfer MR, Schlögelhofer M, Klier CM, McGorry PD. Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nat Commun. 2015;6:7934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milte CM, Sinn N, Buckley JD, Coates AM, Young RM, Howe PR. Polyunsaturated fatty acids, cognition and literacy in children with ADHD with and without learning difficulties. J Child Heal Care. 2011;15:299–311.
Article
Google Scholar
Dyall SC. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. 2015;7:1–15.
Article
CAS
Google Scholar
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509 Available from: http://www.ncbi.nlm.nih.gov/pubmed/13428781. [cited 2014 Sep 26].
CAS
PubMed
Google Scholar
Kaluzny MA, Duncan LA, Merritt MV, Epps DE. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985;26:135–40 Available from: http://www.ncbi.nlm.nih.gov/pubmed/3973509. [cited 2016 Feb 8].
CAS
PubMed
Google Scholar
Bodennec J, Koul O, Aguado I, Brichon G, Zwingelstein G, Portoukalian J. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J Lipid Res. 2000;41:1524–31.
CAS
PubMed
Google Scholar
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci. 2018;11:10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29410613. [cited 2019 Jul 2].
Article
PubMed
PubMed Central
CAS
Google Scholar
Jansen GR, Zanetti ME, Hutchison CF. Studies on lipogenesis in vivo: Fatty acid and cholesterol synthesis in hyperglycaemic-obese mice. Biochem J. 1967;102:870–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16742504. [cited 2019 Jul 2].
CAS
PubMed
PubMed Central
Google Scholar
Hussain G, Schmitt F, Loeffler J-P, de Aguilar J-LG. Fatting the brain: a brief of recent research. Front Cell Neurosci. 2013;7:1–14 Available from: http://journal.frontiersin.org/article/10.3389/fncel.2013.00144/abstract.
Article
CAS
Google Scholar
Nagy K, Tiuca I-D. Importance of Fatty Acids in Physiopathology of Human Body. Fat Acids. 2017:3–22 Available from: http://www.intechopen.com/books/fatty-acids/importance-of-fatty-acids-in-physiopathology-of-human-body.
Hulbert AJ, Turner N, Storlien LH, Else PL. Dietary fats and membrane function: implications for metabolism and disease. Biol Rev Camb Philos Soc. 2005;80:155–69.
Article
CAS
PubMed
Google Scholar
Chen CT, Liu Z, Ouellet M, Calon F, Bazinet RP. Rapid β-oxidation of eicosapentaenoic acid in mouse brain: an in situ study. Prostaglandins Leukot Essent Fat Acids. 2009;80:157–63.
Article
CAS
Google Scholar
Chen CT, Liu Z, Bazinet RP. Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem. 2011;116:363–73.
Article
CAS
PubMed
Google Scholar
Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res. 2009;50:1259–68 Available from: http://www.jlr.org/lookup/doi/10.1194/jlr.M800530-JLR200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CT, Bazinet RP. Β-Oxidation and Rapid Metabolism, But Not Uptake Regulate Brain Eicosapentaenoic Acid Levels. Prostaglandins Leukot Essent Fat Acids. 2015;92:33–40. https://doi.org/10.1016/j.plefa.2014.05.007.
Article
CAS
Google Scholar
Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009;28:525–42 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20439549. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Borg ML, Omran SF, Weir J, Meikle PJ, Watt MJ. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J Physiol. 2012;590:4377–89 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22674717. [cited 2019 Jul 2].
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross BM, Moszczynska A, Blusztajn JK, Sherwin A, Lozano A, Kish SJ. Phospholipid biosynthetic enzymes in human brain. Lipids. 1997;32:351–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9113621. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Haug A, Nyquist NF, Mosti TJ, Andersen M, Høstmark AT. Increased EPA levels in serum phospholipids of humans after four weeks daily ingestion of one portion chicken fed linseed and rapeseed oil. Lipids Health Dis. 2012;11:1–11.
Article
CAS
Google Scholar
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24 Available from: http://www.nature.com/articles/nrm2330. [cited 2019 Jul 2].
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo M, Stockert L, Akbar M, Kim H-Y. Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J Mol Neurosci. 2007;33:67–73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17901548. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;126:1–27.
Article
CAS
PubMed
Google Scholar
Pascher I. Molecular arrangements in sphingolipids Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta - Biomembr. 1976;455:433–51 Available from: https://linkinghub.elsevier.com/retrieve/pii/0005273676903163. [cited 2019 Jul 2].
Article
CAS
Google Scholar
Posse de Chaves E, Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010;584:1748–59 Available from: http://doi.wiley.com/10.1016/j.febslet.2009.12.010. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Yu RK, Tsai Y-T, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci. 2011;60:537–44 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21937853. [cited 2019 Jul 2].
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford MA, Leigh Broadhurst C, Guest M, Nagar A, Wang Y, Ghebremeskel K, et al. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins Leukot Essent Fat Acids. 2013;88:5–13 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23206328. [cited 2019 Jul 2].
Article
CAS
Google Scholar
Hishikawa D, Valentine WJ, Iizuka-Hishikawa Y, Shindou H, Shimizu T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett. 2017;591:2730–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiser M, Butt C, Mohajeri M. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients. 2016;8:99 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26901223. [cited 2019 Jul 2].
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelly L, Grehan B, Chiesa A Della, O’Mara SM, Downer E, Sahyoun G, et al. The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiol Aging. 2011;32:2318.e1-2318.e15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20570403. [cited 2019 Jul 2]
Article
CAS
Google Scholar
Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23:270–99 Available from: https://www.cambridge.org/core/product/identifier/S0954422410000168/type/journal_article. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Kalaivanisailaja J, Manju V, Nalini N. Lipid profile in mice fed a high-fat diet after exogenous leptin administration. Pol J Pharmacol. 55:763–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/14704473. [cited 2019 Jul 2].
Ludgero-Correia A, Aguila MB, Mandarim-de-Lacerda CA, Faria TS. Effects of high-fat diet on plasma lipids, adiposity, and inflammatory markers in ovariectomized C57BL/6 mice. Nutrition. 2012;28:316–23 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22079392. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Lyons C, Kennedy E, Roche H. Metabolic Inflammation-Differential Modulation by Dietary Constituents. Nutrients. 2016;8:247 Available from: http://www.mdpi.com/2072-6643/8/5/247.
Article
PubMed Central
CAS
Google Scholar
Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16357064. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Börgeson E, Godson C. Resolution of inflammation: therapeutic potential of pro-resolving lipids in type 2 diabetes mellitus and associated renal complications. Front Immunol. 2012;3:318 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23087692. [cited 2019 Jul 2].
Article
PubMed
PubMed Central
Google Scholar
Zahradka P, Neumann S, Aukema HM, Taylor CG. Adipocyte lipid storage and adipokine production are modulated by lipoxygenase-derived oxylipins generated from 18-carbon fatty acids. Int J Biochem Cell Biol. 2017;88:23–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28465089. [cited 2019 Jul 2].
Article
CAS
PubMed
Google Scholar
Christophersen OA, Haug A. Animal products, diseases and drugs: A plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis. 2011;10:16 Available from: http://www.lipidworld.com/content/10/1/16.
Article
PubMed
PubMed Central
Google Scholar