Bray GA, Lee M, Bray TL: Weight gain of rats fed medium-chain triglycerides is less than rats fed long-chain triglycerides. Int J Obes. 1980, 4: 27-32.
CAS
Google Scholar
Hashim SA, Tantibhedyangkul P: Medium chain triglyceride in early life: effects on growth of adipose tissue. Lipids. 1987, 22: 429-434.
Article
CAS
Google Scholar
Papamandjaris AA, White MD, Raeini-Sarjaz M, Jones PJ: Endogenous fat oxidation during medium chain versus long chain triglyceride feeding in healthy women. Int J Obes Relat Metab Disord. 2000, 24: 1158-1166. 10.1038/sj.ijo.0801350.
Article
CAS
Google Scholar
Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K: Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr. 2001, 131: 2853-2859.
CAS
Google Scholar
Nosaka N, Maki H, Suzuki Y, Haruna H, Ohara A, Kasai M, Tsuji H, Aoyama T, Okazaki M, Igarashi O, Kondo K: Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans. J Atheroscler Thromb. 2003, 10: 290-298.
Article
CAS
Google Scholar
Han J, Hamilton JA, Kirkland JL, Corkey BE, Guo W: Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes Res. 2003, 11: 734-744.
Article
CAS
Google Scholar
St-Onge MP, Ross R, Parsons WD, Jones PJ: Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes Res. 2003, 11: 395-402.
Article
CAS
Google Scholar
St-Onge MP, Jones PJ: Greater rise in fat oxidation with medium-chain triglyceride consumption relative to long-chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue. Int J Obes Relat Metab Disord. 2003, 27: 1565-1571. 10.1038/sj.ijo.0802467.
Article
CAS
Google Scholar
Bourque C, St-Onge MP, Papamandjaris AA, Cohn JS, Jones PJ: Consumption of an oil composed of medium chain triacyglycerols, phytosterols, and N-3 fatty acids improves cardiovascular risk profile in overweight women. Metabolism. 2003, 52: 771-777. 10.1016/S0026-0495(03)00070-2.
Article
CAS
Google Scholar
St-Onge MP, Bourque C, Jones PJ, Ross R, Parsons WE: Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. Int J Obes Relat Metab Disord. 2003, 27: 95-102. 10.1038/sj.ijo.0802169.
Article
CAS
Google Scholar
Bach AC, Ingenbleek Y, Frey A: The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy?. J Lipid Res. 1996, 37: 708-726.
CAS
Google Scholar
Aas M: Organ and subcellular distribution of fatty acid activating enzymes in the rat. Biochim Biophys Acta. 1971, 231: 32-47.
Article
CAS
Google Scholar
Wiley JH, Leveille GA: Metabolic consequences of dietary medium-chain triglycerides in the rat. J Nutr. 1973, 103: 829-835.
CAS
Google Scholar
Lavau MM, Hashim SA: Effect of medium chain triglyceride on lipogenesis and body fat in the rat. J Nutr. 1978, 108: 613-620.
CAS
Google Scholar
Hill JO, Peters JC, Lin D, Yakubu F, Greene H, Swift L: Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int J Obes Relat Metab Disord. 1993, 17: 223-236.
CAS
Google Scholar
Kinkela T, Chanussot F, Bach A, Max JP, Schirardin H, Debry G: Effects of diets containing medium-chain and long-chain triacylglycerols in the genetically obese Zucker fa/fa rat. Composition of fatty acids and triacylglycerols of the liver and adipose tissues. Ann Nutr Metab. 1983, 27: 404-414.
Article
CAS
Google Scholar
Sarda P, Lepage G, Roy CC, Chessex P: Storage of medium-chain triglycerides in adipose tissue of orally fed infants. Am J Clin Nutr. 1987, 45: 399-405.
CAS
Google Scholar
Guo W, Lei T, Wang T, Corkey BE, Han J: Octanoate inhibits triglyceride synthesis in 3T3-L1 and human adipocytes. J Nutr. 2003, 133: 2512-2518.
CAS
Google Scholar
Han J, Farmer SR, Kirkland JL, Corkey BE, Yoon R, Pirtskhalava T, Ido Y, Guo W: Octanoate attenuates adipogenesis in 3T3-L1 preadipocytes. J Nutr. 2002, 132: 904-910.
CAS
Google Scholar
Nakajima I, Muroya S, Chikuni K: Growth arrest by octanoate is required for porcine preadipocyte differentiation. Biochem Biophys Res Commun. 2003, 309: 702-708. 10.1016/j.bbrc.2003.08.057.
Article
CAS
Google Scholar
Graves RA, Tontonoz P, Spiegelman BM: Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol. 1992, 12: 1202-1208.
Article
CAS
Google Scholar
Guo W, Choi JK, Kirkland JL, Corkey BE, Hamilton JA: Esterification of free fatty acids in adipocytes: a comparison between octanoate and oleate. Biochem J. 2000, 349: 463-471. 10.1042/0264-6021:3490463.
Article
CAS
Google Scholar
Wang T, Zang Y, Ling W, Corkey BE, Guo W: Metabolic partitioning of endogenous fatty acid in adipocytes. Obes Res. 2003, 11: 880-887.
Article
CAS
Google Scholar
Guo WLT, Wang T, Corkey BE, Han J: Octanoate inhibits triglyceride synthesis in 3T3-L1 and human adipocytes. J Nutr. 2003, 133: 2512-2518.
CAS
Google Scholar
Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H: Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab. 2003, 285: E295-302.
Article
CAS
Google Scholar
Hajri T, Han XX, Bonen A, Abumrad NA: Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. 2002, 109: 1381-1389. 10.1172/JCI200214596.
Article
CAS
Google Scholar
Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15 (19): 5336-48. 1996 Oct 1
Sato O, Kuriki C, Fukui Y, Motojima K: Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands. J Biol Chem. 2002, 277 (18): 15703-11. 10.1074/jbc.M110158200. Epub 2002 Feb 26.
Article
CAS
Google Scholar
Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA. 1997, 94: 4318-4323. 10.1073/pnas.94.9.4318.
Article
CAS
Google Scholar
Shillabeer G, Lau DC: Regulation of new fat cell formation in rats: the role of dietary fats. J Lipid Res. 1994, 35: 592-600.
CAS
Google Scholar
Shillabeer G, Forden JM, Lau DC: Induction of preadipocyte differentiation by mature fat cells in the rat. J Clin Invest. 1989, 84: 381-387.
Article
CAS
Google Scholar
Brandes R, Arad R, Bar-Tana J: Inducers of adipose conversion activate transcription promoted by a peroxisome proliferators response element in 3T3-L1 cells. Biochem Pharmacol. 1995, 50: 1949-1951. 10.1016/0006-2952(95)02082-9.
Article
CAS
Google Scholar
Ibrahimi A, Teboul L, Gaillard D, Amri EZ, Ailhaud G, Young P, Cawthorne MA, Grimaldi PA: Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Mol Pharmacol. 1994, 46: 1070-1076.
CAS
Google Scholar
Ailhaud G, Amri EZ, Grimaldi PA: Fatty acids and expression of lipid-related genes in adipose cells. Proc Nutr Soc. 1996, 55: 151-154.
Article
CAS
Google Scholar
Ailhaud G, Amri EZ, Grimaldi PA: Fatty acids and adipose cell differentiation. Prostaglandins Leukot Essent Fatty Acids. 1995, 52: 113-115. 10.1016/0952-3278(95)90008-X.
Article
CAS
Google Scholar
Amri EZ, Bertrand B, Ailhaud G, Grimaldi P: Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J Lipid Res. 1991, 32: 1449-1456.
CAS
Google Scholar
McGarry JD, Sen A, Esser V, Woeltje KF, Weis B, Foster DW: New insights into the mitochondrial carnitine palmitoyltransferase enzyme system. Biochimie. 1991, 73: 77-84. 10.1016/0300-9084(91)90078-F.
Article
CAS
Google Scholar
Fujino T, Takei YA, Sone H, Ioka RX, Kamataki A, Magoori K, Takahashi S, Sakai J, Yamamoto TT: Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. J Biol Chem. 2001, 276: 35961-35966. 10.1074/jbc.M106651200.
Article
CAS
Google Scholar
Vessey DA, Lau E, Kelley M, Warren RS: Isolation, sequencing, and expression of a cDNA for the HXM-A form of xenobiotic/medium-chain fatty acid:CoA ligase from human liver mitochondria. J Biochem Mol Toxicol. 2003, 17: 1-6. 10.1002/jbt.10056.
Article
CAS
Google Scholar
Oka Y, Kobayakawa K, Nishizumi H, Miyamichi K, Hirose S, Tsuboi A, Sakano H: O-MACS, a novel member of the medium-chain acyl-CoA synthetase family, specifically expressed in the olfactory epithelium in a zone-specific manner. Eur J Biochem. 2003, 270: 1995-2004. 10.1046/j.1432-1033.2003.03571.x.
Article
CAS
Google Scholar
Lei T, Xie W, Watkins PA, Guo W: Activation of medium-chain fatty acids in 3T3-L1 adipocytes and mouse adipose tissue. Obes Res. 2003, 11: 180P-(abstract)
Google Scholar
Hickson-Bick DL, Sparagna GC, Buja LM, McMillin JB: Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Physiol Heart Circ Physiol. 2002, 282: H656-664.
Article
CAS
Google Scholar
Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzman M, Brownlee M: Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem. 2001, 276: 25096-25100. 10.1074/jbc.M007383200.
Article
CAS
Google Scholar
Yamagishi S, Okamoto T, Amano S, Inagaki Y, Koga K, Koga M, Choei H, Sasaki N, Kikuchi S, Takeuchi M, Makita Z: Palmitate-induced apoptosis of microvascular endothelial cells and pericytes. Mol Med. 2002, 8: 179-184.
CAS
Google Scholar
Turrens JF, Alexandre A, Lehninger AL: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985, 237: 408-414. 10.1016/0003-9861(85)90293-0.
Article
CAS
Google Scholar
Young TA, Cunningham CC, Bailey SM: Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys. 2002, 140: 65-72. 10.1016/S0003-9861(02)00338-7.
Article
Google Scholar
Hu E, Kim JB, Sarraf P, Spiegelman BM: Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science. 1996, 274: 2100-2103. 10.1126/science.274.5295.2100.
Article
CAS
Google Scholar
Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T: Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem. 2001, 276: 38341-38344. 10.1074/jbc.C100316200.
Article
CAS
Google Scholar
Camp HS, Tafuri SR, Leff T: c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology. 1999, 140: 392-397. 10.1210/en.140.1.392.
CAS
Google Scholar
Debril MB, Renaud JP, Fajas L, Auwerx J: The pleiotropic functions of peroxisome proliferator-activated receptor gamma. J Mol Med. 2001, 79: 30-47. 10.1007/s001090000145.
Article
CAS
Google Scholar
Rosen ED, Spiegelman BM: PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001, 276: 37731-37734. 10.1074/jbc.M106424200.
Article
CAS
Google Scholar
Hihi AK, Michalik L, Wahli W: PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci. 2002, 59: 790-798. 10.1007/s00018-002-8467-x.
Article
CAS
Google Scholar
Sewter C, Vidal-Puig A: PPARgamma and the thiazolidinediones: molecular basis for a treatment of 'Syndrome X'?. Diabetes Obes Metab. 2002, 4: 239-248. 10.1046/j.1463-1326.2002.00187.x.
Article
CAS
Google Scholar
Knouff C, Auwerx J: Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev. 2004, 25: 899-918. 10.1210/er.2003-0036.
Article
CAS
Google Scholar
Oberfield JL, Collins JL, Holmes CP, Goreham DM, Cooper JP, Cobb JE, Lenhard JM, Hull-Ryde EA, Mohr CP, Blanchard SG, Parks DJ, Moore LB, Lehmann JM, Plunket K, Miller AB, Milburn MV, Kliewer SA, Willson TM: A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci U S A. 1999, 96: 6102-6106. 10.1073/pnas.96.11.6102.
Article
CAS
Google Scholar
Mukherjee R, Hoener PA, Jow L, Bilakovics J, Klausing K, Mais DE, Faulkner A, Croston GE, Paterniti JR: A selective peroxisome proliferator-activated receptor-gamma (PPARgamma) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol. 2000, 14: 1425-1433. 10.1210/me.14.9.1425.
CAS
Google Scholar
Camp HS, Chaudhry A, Leff T: A novel potent antagonist of peroxisome proliferator-activated receptor gamma blocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes. Endocrinology. 2001, 142: 3207-3213. 10.1210/en.142.7.3207.
CAS
Google Scholar
Lee G, Elwood F, McNally J, Weiszmann J, Lindstrom M, Amaral K, Nakamura M, Miao S, Cao P, Learned RM, Chen JL, Li Y: T007 a selective ligand for peroxisome proliferator-activated receptor gamma, functions as an antagonist of biochemical and cellular activities. J Biol Chem. 0907, 277: 19649-19657. 10.1074/jbc.M200743200.
Article
Google Scholar
Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, Plunket KD, Shenk JL, Stimmel JB, Therapontos C, Willson TM, Blanchard SG: Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry. 2002, 28: 6640-6650. 10.1021/bi0159581.
Article
Google Scholar
Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV: Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999, 3: 397-403. 10.1016/S1097-2765(00)80467-0.
Article
CAS
Google Scholar
Choi SL, Kim SJ, Lee KT, Kim J, Mu J, Birnbaum MJ, Soo Kim S, Ha J: The regulation of AMP-activated protein kinase by H(2)O(2). Biochem Biophys Res Commun. 2001, 287: 92-97. 10.1006/bbrc.2001.5544.
Article
CAS
Google Scholar
Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Paulson KE, Greenberg AS: TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem. 2003, 89: 1077-1086. 10.1002/jcb.10565.
Article
CAS
Google Scholar
Floyd ZE, Stephens JM: Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem. 2002, 277: 4062-4068. 10.1074/jbc.M108473200.
Article
CAS
Google Scholar
Huang WC, Chio CC, Chi KH, Wu HM, Lin WW: Superoxide anion-dependent Raf/MEK/ERK activation by peroxisome proliferator activated receptor gamma agonists 15-deoxy-delta(12,14)-prostaglandin J(2), ciglitazone, and GW1929. Exp Cell Res. 2002, 277: 192-200. 10.1006/excr.2002.5546.
Article
CAS
Google Scholar
Hedvat M, Jain A, Carson DA, Leoni LM, Huang G, Holden S, Lu D, Corr M, Fox W, Agus DB: Inhibition of HER-kinase activation prevents ERK-mediated degradation of PPARgamma. Cancer Cell. 2004, 5: 565-574. 10.1016/j.ccr.2004.05.014.
Article
CAS
Google Scholar
Tanabe Y, Nakayama K: Mechanical stretching inhibits adipocyte differentiation of 3T3-L1 cells: the molecular mechanism and pharmacological regulation. Nippon Yakurigaku Zasshi. 2004, 124: 337-344.
Article
CAS
Google Scholar
Tanabe Y, Koga M, Saito M, Matsunaga Y, Nakayama K: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J Cell Sci. 2004, 117: 3605-3614. 10.1242/jcs.01207.
Article
CAS
Google Scholar
Goransson O, Ryden M, Nilsson R, Arner P, Degerman E: Dimethylaminopurine inhibits metabolic effects of insulin in primary adipocytes. In J Nutr Biochem. 2004, 303-312. 10.1016/j.jnutbio.2004.01.004.
Google Scholar
Thupari JN, Landree LE, Ronnett GV, Kuhajda FP: C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc Natl Acad Sci U S A. 2002, 99: 9498-9502.
Article
CAS
Google Scholar
St-Onge MP: Relationship between body composition changes and changes in physical function and metabolic risk factors in aging. Curr Opin Clin Nutr Metab Care. 2005, 8: 523-528.
Google Scholar
St-Onge MP, Janssen I, Heymsfield SB: Metabolic syndrome in normal-weight Americans: new definition of the metabolically obese, normal-weight individual. Diabetes Care. 2004, 27: 2222-2228.
Article
Google Scholar