Rosenberg IH: Sarcopenia: origins and clinical relevance. Clin Geriatr Med. 2011, 27: 337-339. 10.1016/j.cger.2011.03.003.
Article
Google Scholar
Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ: Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEB J: Off Publ of the Fed of Am Soc for Exp Biol. 2005, 19: 422-424.
CAS
Google Scholar
Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR: The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metabol. 2000, 85: 4481-4490. 10.1210/jc.85.12.4481.
CAS
Google Scholar
Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ: Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009, 587: 211-217. 10.1113/jphysiol.2008.164483.
Article
CAS
Google Scholar
Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM: Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009, 89: 161-168.
Article
CAS
Google Scholar
Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, Tarnopolsky MA, Phillips SM: Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012, 1-9.
Google Scholar
Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM: Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr. 2012, 1-5.
Google Scholar
Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM: Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007, 85: 1031-1040.
CAS
Google Scholar
Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM: Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009, 107: 987-992. 10.1152/japplphysiol.00076.2009.
Article
CAS
Google Scholar
Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ: Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011, 93: 997-1005. 10.3945/ajcn.110.008102.
Article
CAS
Google Scholar
Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB, Frystyk J, Flyvbjerg A, Schjerling P, van Hall G: Whey and casein labeled with L-[1-13 C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab. 2011, 300: E231-242. 10.1152/ajpendo.00513.2010.
Article
CAS
Google Scholar
Pennings B, Groen BB, de Lange A, Gijsen AP, Zorenc AH, Senden JM, van Loon LJ: Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. American journal of physiology Endocrinology and metabolism. 2012
Google Scholar
Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR: A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006, 291: E381-387. 10.1152/ajpendo.00488.2005.
Article
CAS
Google Scholar
Rieu I, Balage M, Sornet C, Giraudet C, Pujos E, Grizard J, Mosoni L, Dardevet D: Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol. 2006, 575: 305-315. 10.1113/jphysiol.2006.110742.
Article
CAS
Google Scholar
Hayes A, Cribb PJ: Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr Opin Clin Nutr Metab Care. 2008, 11: 40-44. 10.1097/MCO.0b013e3282f2a57d.
Article
CAS
Google Scholar
Phillips SM, Tang JE, Moore DR: The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009, 28: 343-354.
Article
CAS
Google Scholar
Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001, 280: E340-348.
CAS
Google Scholar
Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997, 94: 14930-14935. 10.1073/pnas.94.26.14930.
Article
CAS
Google Scholar
Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, Everwand J, Benamouzig R, Tome D: Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 2003, 133: 1308-1315.
CAS
Google Scholar
Canadian Institutes of Health Research NSaERCoC, Social Sciences and Humanities Research Council of Canada, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans: 2010
Fisher S, Ottenbacher KJ, Goodwin JS, Graham J, Ostir GV: Short Physical Performance Battery in Hospitalized Older Adults. Aging Clin Exp Res. 2009, 21: 445-
Article
Google Scholar
Burd NA, West DW, Rerecich T, Prior T, Baker SK, Phillips SM: Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies. Nutr Metab. 8: 10.1186/1743-7075-9-57.
Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, Smith K, Rennie MJ: Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol. 2008, 586:
Google Scholar
Moore DR, Phillips SM, Babraj JA, Smith K, Rennie MJ: Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab. 2005, 288: E1153-1159. 10.1152/ajpendo.00387.2004.
Article
CAS
Google Scholar
Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM: Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009, 587: 897-904. 10.1113/jphysiol.2008.164087.
Article
CAS
Google Scholar
Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, Cashaback JG, Potvin JR, Baker SK, Phillips SM: Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol. 2010, 588: 3119-3130. 10.1113/jphysiol.2010.192856.
Article
CAS
Google Scholar
Burd NA, Groen BB, Beelen M, Senden JM, Gijsen AP, van Loon LJ: The reliability of using the single-biopsy approach to assess basal muscle protein synthesis rates in vivo in humans. Metab: Clin and Exp. 2011
Google Scholar
Smith GI, Villareal DT, Lambert CP, Reeds DN, Selma Mohammed B, Mittendorfer B: Timing of the initial muscle biopsy does not affect the measured muscle protein fractional synthesis rate during basal, postabsorptive conditions. J Appl Physiol. 2010, 108: 363-368.
Article
Google Scholar
Tarnopolsky MA, Atkinson SA, MacDougall JD, Senor BB, Lemon PW, Schwarcz H: Whole body leucine metabolism during and after resistance exercise in fed humans. Med Sci Sports Exerc. 1991, 23: 326-333.
Article
CAS
Google Scholar
Anthony TG, McDaniel BJ, Knoll P, Bunpo P, Paul GL, McNurlan MA: Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. J Nutr. 2007, 137: 357-362.
CAS
Google Scholar
Dangin M, Boirie Y, Guillet C, Beaufrere B: Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr. 2002, 132: 3228S-3233S.
CAS
Google Scholar
Dangin M, Guillet C, Garcia-Rodenas C, Gachon P, Bouteloup-Demange C, Reiffers-Magnani K, Fauquant J, Ballevre O, Beaufrere B: The rate of protein digestion affects protein gain differently during aging in humans. J Physiol. 2003, 549: 635-644. 10.1113/jphysiol.2002.036897.
Article
CAS
Google Scholar
Luiking YC, Engelen MP, Soeters PB, Boirie Y, Deutz NE: Differential metabolic effects of casein and soy protein meals on skeletal muscle in healthy volunteers. Clin Nutr. 2011, 30: 65-72. 10.1016/j.clnu.2010.06.012.
Article
CAS
Google Scholar
Fouillet H, Mariotti F, Gaudichon C, Bos C, Tome D: Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2002, 132: 125-133.
CAS
Google Scholar
Young VR, Wayler A, Garza C, Steinke FH, Murray E, Rand WM, Scrimshaw NS: A long-term metabolic balance study in young men to assess the nutritional quality of an isolated soy protein and beef proteins. Am J Clin Nutr. 1984, 39: 8-15.
CAS
Google Scholar
Young VR: Soy protein in relation to human protein and amino acid nutrition. J Am Diet Assoc. 1991, 91: 828-835.
CAS
Google Scholar
Young VR, Puig M, Queiroz E, Scrimshaw NS, Rand WM: Evaluation of the protein quality of an isolated soy protein in young men: relative nitrogen requirements and effect of methionine supplementation. Am J Clin Nutr. 1984, 39: 16-24.
CAS
Google Scholar
Tang JE, Phillips SM: Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care. 2009, 12: 66-71. 10.1097/MCO.0b013e32831cef75.
Article
CAS
Google Scholar
Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS: Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr. 2005, 135: 376-382.
CAS
Google Scholar
Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR: Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000, 130: 2413-2419.
CAS
Google Scholar
West DW, Burd NA, Coffey VG, Baker SK, Burke LM, Hawley JA, Moore DR, Stellingwerff T, Phillips SM: Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr. 2011, 94: 795-803. 10.3945/ajcn.111.013722.
Article
CAS
Google Scholar
Engelen MP, Rutten EP, De Castro CL, Wouters EF, Schols AM, Deutz NE: Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2007, 85: 431-439.
CAS
Google Scholar