Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.
Article
CAS
PubMed
Google Scholar
Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.
Article
CAS
PubMed
Google Scholar
Soliman GA. Dietary Fiber, atherosclerosis, and cardiovascular disease. Nutrients. 2019;11:1155.
Article
CAS
PubMed Central
Google Scholar
Lim GB. Dyslipidaemia: ANGPTL3: a therapeutic target for atherosclerosis. Nat Rev Cardiol. 2017;14:381.
Article
CAS
PubMed
Google Scholar
Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS, Gupta M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 2018;276:98–108.
Article
CAS
PubMed
Google Scholar
Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47:621–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li N. CD4+ T cells in atherosclerosis: regulation by platelets. Thromb Haemost. 2013;109:980–90.
Article
CAS
PubMed
Google Scholar
Dumitru C, Kabat AM, Maloy KJ. Metabolic adaptations of CD4+ T cells in inflammatory disease. Front Immunol. 2018;9:540.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tse K, Tse H, Sidney J, Sette A, Ley K. T cells in atherosclerosis. Int Immunol. 2013;25:615–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sécca C, Faget DV, Hanschke SC, Carneiro MS, Bonamino MH, de-Araujo-Souza PS, Viola JP. IRF2BP2 transcriptional repressor restrains naive CD4 T cell activation and clonal expansion induced by TCR triggering. J Leukoc Biol. 2016;100:1081–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gregorczyk I, Maślanka T. Effect of selected non-steroidal anti-inflammatory drugs on activation-induced CD25 expression on murine CD4+ and CD8+ T cells: an in vitro study. Cent Eur J Immunol. 2019;44:109–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brockmann L, Soukou S, Steglich B, Czarnewski P, Zhao L, Wende S, Bedke T, Ergen C, Manthey C, Agalioti T, Geffken M, Seiz O, Parigi SM, Sorini C, Geginat J, Fujio K, Jacobs T, Roesch T, Izbicki JR, Lohse AW, Flavell RA, Krebs C, Gustafsson JA, Antonson P, Roncarolo MG, Villablanca EJ, Gagliani N, Huber S. Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nat Commun. 2018;9:5457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carabelli J, Prato CA, Sanmarco LM, Aoki MP, Campetella O, Tribulatti MV. Interleukin-6 signalling mediates Galectin-8 co-stimulatory activity of antigen-specific CD4 T-cell response. Immunology. 2018;155:379–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson RT, Gorham JD. TGF-beta 1 regulates antigen-specific CD4+ T cell responses in the periphery. J Immunol. 2007;179:71–9.
Article
CAS
PubMed
Google Scholar
Lü SL, Dang GH, Deng JC, Liu HY, Liu B, Yang J, Ma XL, Miao YT, Jiang CT, Xu QB, Wang X, Feng J. Shikonin attenuates hyperhomocysteinemia-induced CD4+ T cell inflammatory activation and atherosclerosis in ApoE−/− mice by metabolic suppression. Acta Pharmacol Sin. 2020;41:47–55.
Article
PubMed
CAS
Google Scholar
Malaguarnera L. Influence of resveratrol on the immune response. Nutrients. 2019;11:946.
Article
CAS
PubMed Central
Google Scholar
Silva RCD, Teixeira JA, Nunes WDG, Zangaro GAC, Pivatto M, Caires FJ, Ionashiro M. Resveratrol: a thermoanalytical study. Food Chem. 2017;237:561–5.
Article
PubMed
CAS
Google Scholar
Berbée JF, Wong MC, Wang Y, van der Hoorn JW, Khedoe PP, van Klinken JB, Mol IM, Hiemstra PS, Tsikas D, Romijn JA, Havekes LM, Princen HM, Rensen PC. Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE*3-Leiden.CETP mice. J Nutr Biochem. 2013;24:1423–30.
Article
PubMed
CAS
Google Scholar
Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013;27:37–48.
Article
PubMed
CAS
Google Scholar
Wiciński M, Socha M, Walczak M, Wódkiewicz E, Malinowski B, Rewerski S, Górski K, Pawlak-Osińska K. Beneficial effects of resveratrol administration-focus on potential biochemical mechanisms in cardiovascular conditions. Nutrients. 2018;10:1813.
Article
PubMed Central
CAS
Google Scholar
Craveiro M, Cretenet G, Mongellaz C, Matias MI, Caron O, de Lima MCP, Zimmermann VS, Solary E, Dardalhon V, Dulić V, Taylor N. Resveratrol stimulates the metabolic reprogramming of human CD4+ T cells to enhance effector function. Sci Signal. 2017;10:eaal3024.
Article
PubMed
CAS
Google Scholar
Zou T, Yang Y, Xia F, Huang A, Gao X, Fang D, Xiong S, Zhang J. Resveratrol inhibits CD4+ T cell activation by enhancing the expression and activity of Sirt1. PLoS One. 2013;8:e75139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Basile G, Agodi A. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int J Mol Sci. 2018;19:2118.
Article
PubMed Central
CAS
Google Scholar
Aldawsari FS, Aguayo-Ortiz R, Kapilashrami K, Yoo J, Luo M, Medina-Franco JL, Velázquez-Martínez CA. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J Enzyme Inhib Med Chem. 2016;31:695–703.
CAS
PubMed
Google Scholar
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.
Article
CAS
PubMed
Google Scholar
Lee DY, Chiu JJ. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J Biomed Sci. 2019;26:56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: successes, surprises, and future challenges. Circ Res. 2016;118:531–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Broekhoven A, Krijnen PAJ, Fuijkschot WW, Morrison MC, Zethof IPA, van Wieringen WN, Smulders YM, Niessen HWM, Vonk ABA. Short-term LPS induces aortic valve thickening in ApoE*3Leiden mice. Eur J Clin Investig. 2019;49:e13121.
Article
CAS
Google Scholar
Zhang HZ, Chen DW, He J, Zheng P, Yu J, Mao XB, Huang ZQ, Luo YH, Luo JQ, Yu B. Long-term dietary resveratrol supplementation decreased serum lipids levels, improved intramuscular fat content, and changed the expression of several lipid metabolism-related miRNAs and genes in growing-finishing pigs1. J Anim Sci. 2019;97:1745–56.
Article
PubMed
PubMed Central
Google Scholar
Jeon SM, Lee SA, Choi MS. Antiobesity and vasoprotective effects of resveratrol in apoE-deficient mice. J Med Food. 2014;17:310–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Cao X, Zhu W, Liu Z, Liu H, Zhou Y, Cao Y, Liu C, Xie Y. Resveratrol enhances autophagic flux and promotes ox-LDL degradation in HUVECs via Upregulation of SIRT1. Oxidative Med Cell Longev. 2016;2016:7589813.
Google Scholar
Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang QY, Mi MT. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7:e02210–5.
CAS
PubMed
PubMed Central
Google Scholar
Chassot LN, Scolaro B, Roschel GG, Cogliati B, Cavalcanti MF, Abdalla DSP, Castro IA. Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr (−/−) mice. J Nutr Biochem. 2018;61:48–55.
Article
CAS
PubMed
Google Scholar
Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, Turi GK, Fazzari MJ, Carsons SE, DeLeon J, Reiss AB. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med (Maywood). 2016;241:1611–9.
Article
CAS
Google Scholar
Seo Y, Park J, Choi W, Ju Son D, Sung Kim Y, Kim MK, Yoon BE, Pyee J, Tae Hong J, Go YM, Park H. Antiatherogenic effect of resveratrol attributed to decreased expression of ICAM-1 (intercellular adhesion molecule-1). Arterioscler Thromb Vasc Biol. 2019;39:675–84.
Article
CAS
PubMed
Google Scholar
Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100:687–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Chen R, Liu D, Wu C, Guo P, Lin W. Asperlin inhibits LPS-evoked foam cell formation and prevents atherosclerosis in ApoE−/− mice. Mar Drugs. 2017;15:358.
Article
PubMed Central
CAS
Google Scholar
Fan E, Zhang L, Jiang S, Bai Y. Beneficial effects of resveratrol on atherosclerosis. J Med Food. 2008;11:610–4.
Article
CAS
PubMed
Google Scholar
Foster JG, Carter E, Kilty I, MacKenzie AB, Ward SG. Mitochondrial superoxide generation enhances P2X7R-mediated loss of cell surface CD62L on naive human CD4+ T lymphocytes. J Immunol. 2013;190:1551–9.
Article
CAS
PubMed
Google Scholar
Waters WR, Rahner TE, Palmer MV, Cheng D, Nonnecke BJ, Whipple DL. Expression of L-Selectin (CD62L), CD44, and CD25 on activated bovine T cells. Infect Immun. 2003;71:317–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerberick GF, Cruse LW, Miller CM, Sikorski EE, Ridder GM. Selective modulation of T cell memory markers CD62L and CD44 on murine draining lymph node cells following allergen and irritant treatment. Toxicol Appl Pharmacol. 1997;146:1–10.
Article
CAS
PubMed
Google Scholar
Thaxton JE, Wallace C, Riesenberg B, Zhang Y, Paulos CM, Beeson CC, Liu B, Li Z. Modulation of endoplasmic reticulum stress controls CD4+ T-cell activation and antitumor function. Cancer Immunol Res. 2017;5:666–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Rudemiller NP, Wen Y, Ren J, Hammer GE, Griffiths R, Privratsky JR, Yang B, Sparks MA, Crowley SD. A20 in myeloid cells protects against hypertension by inhibiting dendritic cell-mediated T-cell activation. Circ Res. 2019;125:1055–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kritikou E, van der Heijden T, Swart M, van Duijn J, Slütter B, Wezel A, Smeets HJ, Maffia P, Kuiper J, Bot I. Hypercholesterolemia induces a mast cell-CD4+ T cell interaction in atherosclerosis. J Immunol. 2019;202:1531–9.
Article
CAS
PubMed
Google Scholar
Lü S, Deng J, Liu H, Liu B, Yang J, Miao Y, Li J, Wang N, Jiang C, Xu Q, Wang X, Feng J. PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 2018;96:585–600.
Article
CAS
Google Scholar
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.
Article
PubMed
PubMed Central
CAS
Google Scholar
Filatova AY, Pylaeva EA, Potekhina AV, Ruleva NY, Klesareva EA, Radyukhina NV, Masenko VP, Shchinova AM, Noeva EA, Provatorov SI, Afanas'eva OI, Aref'eva TI. Low blood content of IL-10-producing CD4+ T cells as a risk factor for progression of coronary atherosclerosis. Bull Exp Biol Med. 2019;166:330–3.
Article
PubMed
CAS
Google Scholar
Terada K, Yamada H, Kikai M, Wakana N, Yamamoto K, Wada N, Motoyama S, Saburi M, Sugimoto T, Irie D, Kato T, Kawahito H, Kami D, Ogata T, Matoba S. Transplantation of periaortic adipose tissue inhibits atherosclerosis in apoE−/− mice by evoking TGF-β1-mediated anti-inflammatory response in transplanted graft. Biochem Biophys Res Commun. 2018;501:145–51.
Article
CAS
PubMed
Google Scholar
Ding R, Gao W, Ostrodci DH, He Z, Song Y, Ma L, Liang C, Wu Z. Effect of interleukin-2 level and genetic variants on coronary artery disease. Inflammation. 2013:36;1225-31.
Damluji AA, Ramireddy A, Al-Damluji MS, Marzouka GR, Otalvaro L, Viles-Gonzalez JF, Dong C, Alfonso CE, Hendel RC, Cohen MG, Moscucci M, Bishopric NH, Myerburg RJ. Association between anti-human heat shock protein-60 and interleukin-2 with coronary artery calcium score. Heart. 2015;101:436–41.
Article
CAS
PubMed
Google Scholar
Boyman O, Kolios AG, Raeber ME. Modulation of T cell responses by IL-2 and IL-2 complexes. Clin Exp Rheumatol. 2015;33:S54–7.
PubMed
Google Scholar
Feng YH, Zhou WL, Wu QL, Li XY, Zhao WM, Zou JP. Low dose of resveratrol enhanced immune response of mice. Acta Pharmacol Sin. 2002;23:893–7.
CAS
PubMed
Google Scholar
Penumathsa SV, Thirunavukkarasu M, Koneru S, Juhasz B, Zhan L, Pant R, Menon VP, Otani H, Maulik N. Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J Mol Cell Cardiol. 2007;42:508–16.
Article
CAS
PubMed
Google Scholar
Chen Q, Wang E, Ma L, Zhai P. Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids Health Dis. 2012;11:56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramprasath VR, Jones PJ. Anti-atherogenic effects of resveratrol. Eur J Clin Nutr. 2010;64:660–8.
Article
CAS
PubMed
Google Scholar
Song R, Li WQ, Dou JL, Li L, Hu YJ, Guo JZ, Lu D, Zhang G, Sun L. Resveratrol reduces inflammatory cytokines via inhibiting nuclear factor-κB and mitogen-activated protein kinase signal pathway in a rabbit atherosclerosis model. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41:866–9.
CAS
PubMed
Google Scholar
Deng YH, Alex D, Huang HQ, Wang N, Yu N, Wang YT, Leung GP, Lee SM. Inhibition of TNF-α-mediated endothelial cell-monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans-3,5,4′-trimethoxystilbene. Phytother Res. 2011;25:451–7.
CAS
PubMed
Google Scholar
Shen MY, Hsiao G, Liu CL, Fong TH, Lin KH, Chou DS, Sheu JR. Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. Br J Haematol. 2007;139:475–85.
CAS
PubMed
Google Scholar
Lin KH, Hsiao G, Shih CM, Chou DS, Sheu JR. Mechanisms of resveratrol-induced platelet apoptosis. Cardiovasc Res. 2009;83:575–85.
Article
CAS
PubMed
Google Scholar
Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res. 2012;32:537–41.
Article
CAS
PubMed
Google Scholar
Movahed A, Nabipour I, Lieben Louis X, Thandapilly SJ, Yu L, Kalantarhormozi M, Rekabpour SJ, Netticadan T. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid Based Complement Alternat Med. 2013;2013:851267.
Article
PubMed
PubMed Central
Google Scholar
Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 1852;2015:1114–23.
Google Scholar
Zwergel C, Valente S, Mai A. DNA Methyltransferases inhibitors from natural sources. Curr Top Med Chem. 2016;16:680–96.
Article
CAS
PubMed
Google Scholar
Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis. 2011;32:224–32.
Article
CAS
PubMed
Google Scholar
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic regulatory mechanisms induced by resveratrol. Nutrients. 2017;9:1201.
Article
PubMed Central
CAS
Google Scholar