Li L, Messina JL. Acute insulin resistance following injury. Trends Endocrinol Metab. 2009;20:429–35. https://doi.org/10.1016/j.tem.2009.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorell A, Efendic S, Gutniak M, Haggmark T, Ljungqvist O. Insulin resistance after abdominal surgery. Br J Surg. 1994;81:59–63. https://doi.org/10.1002/bjs.1800810120.
Article
CAS
PubMed
Google Scholar
Shakeshaft AJ, Scanlon K, Eslick GD, Azmir A, Cox MR. Post-operative glycaemic control using an insulin infusion is associated with reduced surgical site infections in colorectal surgery. World J Surg. 2020;44:3491–500. https://doi.org/10.1007/s00268-020-05596-x.
Article
PubMed
Google Scholar
van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.
Article
PubMed
Google Scholar
Ljungqvist O. Insulin resistance and outcomes in surgery. J Clin Endocrinol Metab. 2010;95:4217–9. https://doi.org/10.1210/jc.2010-1525.
Article
CAS
PubMed
Google Scholar
Thorell A, Nygren J, Ljungqvist O. Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care. 1999;2:69–78.
Article
CAS
PubMed
Google Scholar
Sato H, Carvalho G, Sato T, Lattermann R, Matsukawa T, Schricker T. The association of preoperative glycemic control, intraoperative insulin sensitivity, and outcomes after cardiac surgery. J Clin Endocrinol Metab. 2010;95:4338–44. https://doi.org/10.1210/jc.2010-0135.
Article
CAS
PubMed
Google Scholar
Gianotti L, Biffi R, Sandini M, Marrelli D, Vignali A, Caccialanza R, Vigano J, Sabbatini A, Di Mare G, Alessiani M, et al. Preoperative oral carbohydrate load versus placebo in major elective abdominal surgery (PROCY): a randomized, placebo-controlled, multicenter. Phase III Trial Ann Surg. 2018;267:623–30. https://doi.org/10.1097/SLA.0000000000002325.
Article
PubMed
Google Scholar
Blixt C, Larsson M, Isaksson B, Ljungqvist O, Rooyackers O. The effect of glucose control in liver surgery on glucose kinetics and insulin resistance. Clin Nutr. 2021;40:4526–34. https://doi.org/10.1016/j.clnu.2021.05.017.
Article
CAS
PubMed
Google Scholar
van Stijn MFM, Soeters MR, van Leeuwen PAM, Schreurs WH, Schoorl MG, Twisk JWR, De Bandt J-P, Bonnefont-Rousselot D, Cynober L, Ackermans MT, et al. Effects of a carbohydrate-, glutamine-, and antioxidant-enriched oral nutrition supplement on major surgery-induced insulin resistance: a randomized pilot study. JPEN J Parenter Enteral Nutr. 2018;42:719–29. https://doi.org/10.1177/0148607117711691.
Article
CAS
PubMed
Google Scholar
Holecek M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab. 2018;15:33. https://doi.org/10.1186/s12986-018-0271-1.
Article
CAS
Google Scholar
Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 2010;68:270–9. https://doi.org/10.1111/j.1753-4887.2010.00282.x.
Article
PubMed
Google Scholar
White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021;52:101261. https://doi.org/10.1016/j.molmet.2021.101261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manders RJ, Little JP, Forbes SC, Candow DG. Insulinotropic and muscle protein synthetic effects of branched-chain amino acids: potential therapy for type 2 diabetes and sarcopenia. Nutrients. 2012;4:1664–78. https://doi.org/10.3390/nu4111664.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Rielly R, Li H, Lim SM, Yazbeck R, Kritas S, Ullrich SS, Feinle-Bisset C, Heilbronn L, Page AJ. The effect of isoleucine supplementation on body weight gain and blood glucose response in lean and obese mice. Nutrients. 2020;12:2446. https://doi.org/10.3390/nu12082446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs CJ, Hermans WJH, Holwerda AM, Smeets JSJ, Senden JM, van Kranenburg J, Gijsen AP, Wodzig W, Schierbeek H, Verdijk LB, van Loon LJC. Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial. Am J Clin Nutr. 2019;110:862–72. https://doi.org/10.1093/ajcn/nqz120.
Article
PubMed
PubMed Central
Google Scholar
Roquetto AR, Moura CS, de Almeida S-J, Oliveira POS, Machado KIA, Carvalho G, Risso EM, Amaya-Farfan J. Moderate intake of BCAA-rich protein improves glucose homeostasis in high-fat-fed mice. J Nutr Biochem. 2020;80:108332. https://doi.org/10.1016/j.jnutbio.2019.108332.
Article
CAS
PubMed
Google Scholar
Ardito F, Lai Q, Rinninella E, Mimmo A, Vellone M, Panettieri E, Adducci E, Cintoni M, Mele MC, Gasbarrini A, Giuliante F. The impact of personalized nutritional support on postoperative outcome within the enhanced recovery after surgery (ERAS) program for liver resections: results from the NutriCatt protocol. Updat Surg. 2020. https://doi.org/10.1007/s13304-020-00787-6.
Article
Google Scholar
Arrieta-Cruz I, Su Y, Gutierrez-Juarez R. Suppression of endogenous glucose production by isoleucine and valine and impact of diet composition. Nutrients. 2016;8:79. https://doi.org/10.3390/nu8020079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadota Y, Kazama S, Bajotto G, Kitaura Y, Shimomura Y. Clofibrate-induced reduction of plasma branched-chain amino acid concentrations impairs glucose tolerance in rats. JPEN J Parenter Enteral Nutr. 2012;36:337–43. https://doi.org/10.1177/0148607111414578.
Article
CAS
PubMed
Google Scholar
Eller LK, Saha DC, Shearer J, Reimer RA. Dietary leucine improves whole-body insulin sensitivity independent of body fat in diet-induced obese Sprague-Dawley rats. J Nutr Biochem. 2013;24:1285–94. https://doi.org/10.1016/j.jnutbio.2012.10.004.
Article
CAS
PubMed
Google Scholar
Horiuchi M, Takeda T, Takanashi H, Ozaki-Masuzawa Y, Taguchi Y, Toyoshima Y, Otani L, Kato H, Sone-Yonezawa M, Hakuno F, et al. Branched-chain amino acid supplementation restores reduced insulinotropic activity of a low-protein diet through the vagus nerve in rats. Nutr Metab. 2017;14:59. https://doi.org/10.1186/s12986-017-0215-1.
Article
CAS
Google Scholar
Kawaguchi T, Taniguchi E, Itou M, Sumie S, Oriishi T, Matsuoka H, Nagao Y, Sata M. Branched-chain amino acids improve insulin resistance in patients with hepatitis C virus-related liver disease: report of two cases. Liver Int. 2007;27:1287–92. https://doi.org/10.1111/j.1478-3231.2007.01559.x.
Article
CAS
PubMed
Google Scholar
Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Koorbanally NA, Islam MS. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo. Amino Acids. 2021;53:1135–51. https://doi.org/10.1007/s00726-021-03021-8.
Article
CAS
PubMed
Google Scholar
Woo SL, Yang J, Hsu M, Yang A, Zhang L, Lee RP, Gilbuena I, Thames G, Huang J, Rasmussen A, et al. Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. Am J Clin Nutr. 2019;109:1569–77. https://doi.org/10.1093/ajcn/nqz024.
Article
PubMed
PubMed Central
Google Scholar
Doi M, Yamaoka I, Fukunaga T, Nakayama M. Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochem Biophys Res Commun. 2003;312:1111–7. https://doi.org/10.1016/j.bbrc.2003.11.039.
Article
CAS
PubMed
Google Scholar
Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2007;292:E1683-1693. https://doi.org/10.1152/ajpendo.00609.2006.
Article
CAS
PubMed
Google Scholar
Yoshizawa F. New therapeutic strategy for amino acid medicine: notable functions of branched chain amino acids as biological regulators. J Pharmacol Sci. 2012;118:149–55. https://doi.org/10.1254/jphs.11r05fm.
Article
CAS
PubMed
Google Scholar
Zhang S, Yang Q, Ren M, Qiao S, He P, Li D, Zeng X. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2. Br J Nutr. 2016;116:593–602. https://doi.org/10.1017/S0007114516002439.
Article
CAS
PubMed
Google Scholar
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26. https://doi.org/10.1016/j.cmet.2009.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J Diabetes. 2018;10:357–64. https://doi.org/10.1111/1753-0407.12639.
Article
CAS
PubMed
Google Scholar
Gianotti L, Sandini M, Hackert T. Preoperative carbohydrates: what is new? Curr Opin Clin Nutr Metab Care. 2020;23:262–70. https://doi.org/10.1097/MCO.0000000000000661.
Article
PubMed
Google Scholar
Karimian N, Kaneva P, Donatelli F, Stein B, Liberman AS, Charlebois P, Lee L, Fiore JF, Carli F, Feldman LS. Simple versus complex preoperative carbohydrate drink to preserve perioperative insulin sensitivity in laparoscopic colectomy: a Randomized controlled trial. Ann Surg. 2020;271:819–26. https://doi.org/10.1097/SLA.0000000000003488.
Article
PubMed
Google Scholar
Amer MA, Smith MD, Herbison GP, Plank LD, McCall JL. Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery. Br J Surg. 2017;104:187–97. https://doi.org/10.1002/bjs.10408.
Article
CAS
PubMed
Google Scholar
Wang ZG, Wang Q, Wang WJ, Qin HL. Randomized clinical trial to compare the effects of preoperative oral carbohydrate versus placebo on insulin resistance after colorectal surgery. Br J Surg. 2010;97:317–27. https://doi.org/10.1002/bjs.6963.
Article
CAS
PubMed
Google Scholar
Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13:572–87. https://doi.org/10.1038/nrendo.2017.80.
Article
CAS
PubMed
PubMed Central
Google Scholar
He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009;137:635–46. https://doi.org/10.1016/j.cell.2009.03.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Wang J, Wang Y, Wang P, Zhou Z, Wu R, Xu Q, You H, Liu Y, Wang L, et al. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat Commun. 2022;13:246. https://doi.org/10.1038/s41467-021-27533-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li G, Goode J, Paz JC, Ouyang K, Screaton R, Fischer WH, Chen J, Tabas I, Montminy M. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature. 2012;485:128–32. https://doi.org/10.1038/nature10988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palermo NE, Gianchandani RY, McDonnell ME, Alexanian SM. Stress hyperglycemia during surgery and anesthesia: pathogenesis and clinical implications. Curr DiabRep. 2016;16:33. https://doi.org/10.1007/s11892-016-0721-y.
Article
CAS
Google Scholar
Witasp A, Nordfors L, Schalling M, Nygren J, Ljungqvist O, Thorell A. Increased expression of inflammatory pathway genes in skeletal muscle during surgery. Clin Nutr. 2009;28:291–8. https://doi.org/10.1016/j.clnu.2009.03.003.
Article
CAS
PubMed
Google Scholar
Qing H, Desrouleaux R, Israni-Winger K, Mineur YS, Fogelman N, Zhang C, Rashed S, Palm NW, Sinha R, Picciotto MR, et al. Origin and function of stress-induced IL-6 in murine models. Cell. 2020. https://doi.org/10.1016/j.cell.2020.05.054.
Article
PubMed
PubMed Central
Google Scholar
Strömmer L, Permert J, Arnelo U, Koehler C, Isaksson B, Larsson J, Lundkvist I, Björnholm M, Kawano Y, Wallberg-Henriksson H, Zierath JR. Skeletal muscle insulin resistance after trauma: insulin signaling and glucose transport. Am J Physiol. 1998;275:E351–8. https://doi.org/10.1152/ajpendo.1998.275.2.E351.
Article
PubMed
Google Scholar
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–95.
Article
PubMed
Google Scholar
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol. 2021;22:142–58. https://doi.org/10.1038/s41580-020-00317-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strömmer L, Wickbom M, Wang F, Herrington MK, Ostenson C-G, Arnelo U, Permert J. Early impairment of insulin secretion in rats after surgical trauma. Eur J Endocrinol. 2002;147:825–33.
Article
PubMed
Google Scholar
Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177–97. https://doi.org/10.1002/cphy.c130024.
Article
PubMed
PubMed Central
Google Scholar
Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011;12:141–51. https://doi.org/10.1038/nrm3072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol Res. 2004;50:545–9.
Article
CAS
PubMed
Google Scholar